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Abstract

Can an artificial intelligence understand and inspire discussions in online com-
munities? To answer this question, we will attempt to predict whether a given
comment on Reddit will produce descendant comments, and then generate com-
ments that lead to the most follow-up comments.

1 Introduction

It is possible but non-trivial for human participants of online communities to read and lead the
discussions. In other words, a human participant can understand which comments to respond to, and
how to write comments to attract the comments of others. Our project attempts to build models that
understand the subtleties that make a comment popular, and both predict and generate comments
that have most descendant comments.

We define a descendant d of a comment c to be a comment that is “eventually a reply” to c¢. By
“eventually a reply”, we mean that d could be a direct reply to comment ¢, or a direct reply to a
direct reply to comment ¢, etc. Thus, comments that generate the most discussion can be thought of
as the ones that have the most descendant comments.

2 Background/Related Work

For prediction, no papers have been found that directly address predicting the number of descendant
comments in Reddit. However, CNN models were seen to be successful in predicting whether or
not a tweet will be retweeted by a user in [1], which is an inspiration for our use of CNN models, in
addition to LSTM models that are now standard in NLP.

For generation, there is one relevant paper. Using the vanilla RNN to generate a text suffers the
vanishing gradient problem, which makes it difficult for a model to use information from many time
steps ago to predict the word at a given time step. The paper Long Short-Term Memory introduces
an improvement to RNN that provides multiple paths for a gradient to flow through hidden layers,
thereby preventing a gradient from multiple time steps ago from being vanished [2].

3 Prediction

3.1 Dataset

We use the Reddit Comments Dataset, which contains comments from every subreddit from the last
15 years. From this dataset, we’ve extracted comments from the “news” subreddit from between
January 2016 and March 2017. Each comment comes with relevant metadata such as author, post
time, a link to the article etc. In addition, we processed the data and annotated them with further
information, including how many descendant comments each one has, the parent comment, the
response time, the time of day it was posted, and the day of week it was posted. Here, the parent



comment refers to the comment that the given comment was a reply to, and the response time refers
to the time between the posting of the given comment and the posting of its parent comment (ie how
long it took for the comment to respond to its parent comment). Furthermore, we used the VADER
sentiment analyzer [3] to extract rule-based sentiment features.

After cleaning and pairing comments with their parent comments, we split the dataset into
about 2.3 million comments train, 280 thousand comments dev, and 280 thousand comments
test. Figure 1 shows some distributions for the train comments (the dev comments are distributed
similarly). As can be seen from the left chart of Figure 1, most comments have 0 descendant
comments, followed by 1-2 descendant comments, etc. Thus, it is rare for comments to have high
number of descendant comments. From the right chart of Figure 1, we can see that over 98% of the
comments have length (in number of words, including punctuation) at most 250, and over 99% of
comments have length at most 350. Thus, most comments are not very long, which allows us to
make our models more time efficient by truncating the (negligible amount of) very long comments.
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Figure 1: Distributions for the train dataset. Left: The number of descendant comments each com-
ment has divided into 5 buckets. Right: The cumulative distribution of the length of the comments.

We then formulate the problem as a binary classification problem in which given a comment, output
the label O if the comment has no descendant comments, and output the label 1 if the comment has
at least 1 descendant comment. With this formulation, 53.83% of the dev comments have at least
1 descendant comment - this is used for our naive baseline, in which we just predict the majority
class.

3.2 Approach
We then have the following models in working on this task:

e A logistic baseline model consisting of logistic regression on unigram and bigram features
from the data.

e A human oracle in which we tasked 6 humans to predict whether or not comments will
have descendant comments. In order to ensure fair advantage compared to the other models,
each comment was annotated with is parent comment as well as its response time before
being presented to the human.

e An LSTM model [2] [4] using pretrained 300 dimensional GloVe word embeddings [5]
on Common Crawl to embed the comments. A self-attention layer was added on top of the
LSTM outputs in order learn to weigh important words in comments more, modified from
[6]. The outputs of this layer are concatenated with additional features (the response time
and the length of the comment) and input into another layer (termed layer 2). The result of
layer 2 is finally inputted into a layer that fed into a softmax function to produce the final
labels. The optimizer used was the Adam Optimizer [7] and Dropout regularization [8] was
added between fully connected layers.



e A CNN model [9] with a similar architecture to the LSTM model with the following dif-
ferences: The LSTM layer was replaced with a CNN layer that feeds outputs from a set
of filters into a max pool layer. Positive and negative sentiment intensity scores from the
VADER sentiment analyzer applied to the comment itself and its parent comment were
concatenated with the other additional features to be input into layer 2 (these were empiri-
cally found to have a negligible if not negative impact on the LSTM model). No attention
layer was applied.

3.3 Experiments

3.3.1 Comparing Models

We first compare different models and their performance on a subset of the comments in order to find
the best model to proceed with hyperparameter search. The results are reproduced in Table 1. To
ensure fairness, all models were run on 200,000 train and 40,000 dev comments (except the human
oracle), and the iteration with the best dev accuracy was reported, along with its corresponding train
accuracy. Additional configurations for the LSTM w/ Attention are 128 LSTM units, 32 attention
units, 32 layer 2 units, empirically annealed learning rates, and a Dropout keep probability of 0.9.
Additional configurations for the CNN are filter (window) sizes of [1, 2, 3], 100 filters per filter
size, 64 layer 2 units, empirically annealed learning rates, and a Dropout keep probability of 0.9. In
both we use minibatches of size 64. In Figure 2, we present the learning curves for the LSTM w/
Attention model and the CNN model.

| Model | Train Accuracy | Dev Accuracy |
Naive Baseline - 0.5383
Logistic Baseline 0.6715 0.5780
Human Oracle - 0.625
LSTM w/o Attention | 0.6347 0.6439
LSTM w/ Attention | 0.6469 0.6492
CNN 0.6382 0.6504

Table 1: Performance of Various Models
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Figure 2: Learning curves. Left: LSTM w/ Attention. Right: CNN.

Observations:

e Table 1 shows that the Logistic Baseline overfits, but the best dev accuracy was achieved
while overfitting. More training data (1 million comments) evaluated on less dev data
(10,000 comments) has been shown to increase dev accuracy to a max of 0.5871, and while
this demonstrates that more data will help, is unfair to compare against the other models in
the table due to the different train/dev dataset sizes.



e As the Table 1 and Figure 2 demonstrates, for the LSTM and CNN models, the best dev
accuracy was achieved early on when the train accuracy is quite close to the dev accuracy,
before the model overfits and dev accuracy drops. Lower dropout keep rates were empiri-
cally tested to increase the amount of epochs needed to overfit, but obtain less optimal dev
accuracies. Here, the LSTM model performed better with Attention, and the CNN model
performed the best. The performance difference is not huge between the CNN and LSTM
models, however, the CNN model trains far faster (more than 10x faster) and thus was
chosen for Hyperparameter Search.

e While the CNN model was chosen, LSTM with Attention provides more intuition about
how important a word may be in determining whether a comment gets a response. The
most common heavily weighted token was “?” among those that the model predicted cor-
rectly have response comments, which makes sense since questions tend to elicit responses.
On the other hand, not all questions elicit responses, as “?” was also the most common
heavily weighted token among those that the model predicted incorrectly to have response
comments.

e We chose to compare the models based off of accuracy (number of correct predictions)
rather than F1 score because of the difficulty of predicting descendant comments. Just
because a comment is likely to provoke a response does not mean Redditors will respond.
The average human accuracy only beat the simpler models (Table 1), and the best result
a single human achieved was only 70% accuracy. As a comparison, the Naive Baseline
with an accuracy of 53.83% would obtain an unenlighteningly high F1 score of 70.13%.
In addition, the sizes of the two classes are relatively balanced so accuracy is not a bad
measure.

e In terms of additional features, the response time was the most useful accounting for a
3-4% improvement, while the VADER sentiment features only accounted for 0.1% im-
provement in CNN performance at most (and did not help the LSTM), indicating that the
models captured most of the correlation between VADER sentiment features and response
comments.

3.3.2 Hyperparameter Search

0660 0660 0660

0655 0655

0650

0645

Dev Accuracy
Dev Accuracy
Dev Accuracy

0640

0635

0630

10 20 50 100
Number of Filters Filter Sizes Batch Sizes

21 231 (3.4 (45 [123] (234 [3.45] (1234234512345

16 2 64 128

Figure 3: Hyperparameter Search. Left: Dev Performance on different number of filters. Center:
Dev Performance on different filter sizes. Right: Dev Performance on different minibatch sizes.

Hyperparameter Search was done via grid search on the number of filters per filter size, the filter
sizes, and the minibatch size. Each hyperparameter was individually increased until dev accuracy
dropped. The parameters chosen for the final model were 20 filters per filter size, filter sizes of [1,
2, 3, 4], and minibatch sizes of 64.

3.3.3 Final Model and Analysis

With the given hyperparams on the full 2 million comment training set, our CNN model obtained a
best dev accuracy of 0.6515 on the full dev set (at a training accuracy of 0.6502), which is compa-
rable to our performance on a subset of the dataset. The Learning Curve in Figure 4 demonstrates
that we no longer drastically overfit the training data, which attests to the benefits of more data,
however enough epochs were run to demonstrate that the dev accuracy has maxed out. The same
model obtained a test accuracy of 0.6499, which is only slightly lower than our dev accuracy. For
completeness, the confusion matrix is displayed in Figure 4, the Test precision is 0.6605, and recall
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Figure 4: Left: Learning curve for CNN on full dataset for Train and Dev. Center: Confusion Matrix
as evaluated on Test where false refers to label 0 and true refers to label 1. Right: Chart of what
fraction of comments were predicted to be of the correct class in Dev dataset bucketed by the number
of descendant comments

is 0.7143. The predictions are somewhat skewed towards predicting a label of 1 (as noted by the
higher recall and lower precision), which can be partially explained by the fact that it is the majority
class.

The last chart in Figure 4 demonstrates that even on Dev, our worst accuracy comes from false
positives. This reinforces the notion that even if a comment provokes a response, no one may
respond due to reasons such as low visibility of the comment or that people may be bored or tired of
responding to certain provocations. Meanwhile, the more descendant comments a comment has, the
more likely we are to (correctly) give it the label 1, with about 83% accuracy in labeling comments
with 15 or more descendant comments - a positive sign that we captured some patterns for popular
comments.

Of the comments with label 1 that we predicted correctly, the following is one of the top 5 comments
that we predicted correctly (and that is short enough to reproduce here). It is characterized by the
high presence of “?” and mention of “lawsuits”:

Oh like the dozen that have already been published? The ones
that were used in successful lawsuits of the Russian government
in the last 5 years? Cablegate? HBGary? Those?

Of the comments with label 1 that we predicted incorrectly, the following is the comment that we
thought we most likely predicted correctly. This comment is difficult to understand and seems to
require some sort of background knowledge to know what “the pun” is referring to, and is hard for
even a human to predict whether or not it would get a response.

It didn’t take xlongx for the xpigsx to get to the scene.\n\n
"normally "I “wouldn’t "call "police “pigs “it’s “for “the “pun

Of the comments with label O that we predicted correctly, the following is the one we’re most
confident in. It is characterized by being short and only using words that tend to be in an aside:

Only the finest marihuanas

Of the comments with label 0 that we predicted incorrectly, the following is the comment that we
though we most likely predicted correctly. Perhaps our model was confused by the many unknown
words in the comment, despite the comment not directly asking for a response:

As an anatomy major I don’t like it because it’s the same acronym
that I use for the forearm muscle Extensor Digiti Minimi.

Finally, more enlightening may be attention weighted sentences from the LSTM (despite it not being
chosen for the final model), which demonstrate some of the words that the model found helpful in



This is simply ignorant . Neither party is solely to blame . Both parties are mucked up and need to be changed . They ca n't get along
and act like & children who ** what about me " instead ¥ what about the people [| "

Please , spare me this [SHSSHEE | If you follow that HSillE ) every I&W is just d small step towards fotal HEEESSN |

No it does n't . As you [¥€ not being charged with anything . That would be like not having to follow new traffic laws until you go get a
new license . Regulations change . More than that , nothing new has been made illegal . So your charge that this is illegal on the
EBHES you ‘v specified s WEONG

Figure 5: Visualizations from LSTM w/ Attention

predicting whether or not a comment had descendant comments. For example, in the first sentence of
Figure 5, which was correctly predicted to have descendant comments (probably from being directly
confrontational comments), medium sophistication words of strong emotion tend to have higher
weights, such as “ignorant” and “petulant”, as well as the “?” as discussed previously (even though
it was not used in this sentence to ask a question of other Redditors). The second comment is similar,
but with strong nouns like “nonsense” and “oppresion” highlighted more (even though “oppresion”
is spelled wrong, it appeared a few times in our training set as a common misspelling). Finally, to
illustrate how social media can be unpredictable, the third comment is a clearly confrontational one
that unlike most received no descendant comments, and which we predicted to have label 1 having
highlighted words such as “illegal” and “wrong”.

4 Generation

4.1 Dataset

We used the same Reddit comments dataset as for our Prediction model, but processed it differently.
We ran through every comment from 2005 December to 2017 March, and added comments from
top 20 subreddits that qualify for one of our two criteria features (number of descendant comments
is above 20 or score point is above 1000) to respective files (year-month-subreddit-feature.json).

The total processed dataset for text generation include 17,941,413 comments with a vocabulary of
1,544,449 words. The top 20 most frequent words are ’the’, ’to’, ’a’, 'I’, and’, ’of’, ’it’, ’that’,
’in’, ’is’, "you’, ’s’, ’t’, “on’, ’for’, *was’, *with’, "have’, are’, ’be’. If we exclude stop words, top
20 most frequent words are ’like’, *one’, *people’, ’beer’, ’bottles’, ’time’, ’http’, ’think’, *wall’,
’know’, ’com’, “around’, ’really’, ’great’, "'much’, ’go’, good’, 'never’, ’still’, "back’.

4.2 Approach

Text Generation part of our project uses a recurrent neural network (RNN) with long-short-term-
memory (LSTM) architecture to learn a language model based on the inputted text, and generates a
post by predicting the next token at each word. More concretely, it learns a probability distribution
of each word in the vocabulary that can come after each word by minimizing cross entropy loss
during training. Then it randomly chooses a start word from a set of start words it has seen from
the examples, then recursively generates the token at step (t+1) by randomly choosing a token from
the vocabulary based on the probability each token can come after the token at step (t) which the
language model has learnt during the training. We built our software after forking off of an existing
implementation of RNN Text Generation using TensorFlow on Github [10].

We investigated the impact of different parameters and features. First of all, we taught the model
comments from six different subreddits such as r/funny and r/news to study how comments differ
among online communities. Then, we taught the model the comments that have been chosen for high
numChildren, high upvote score, and high controversiality (upvotes + downvotes) to study whether
the three indicators of engagement are produced by similar comments or not. Then, we ran multiple
iterations of LSTM with different hyper-parameters, namely altering size of each batch, altering
number of total batches, number of time steps to stop after in RNN, number of layers, and learning
rate. The results are below.



4.3 Experiments

4.3.1 Quantitative Analysis

For quantitative analysis of text generation, we run training while varying target subreddits, target
features, number of epochs, number of layers, and learning rate. Then we compute perplexity score
of our model in training step, and compare them to understand how different factors affect our
model’s performance.
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We also found that achieving a lower perplexity score on comments that have received scores of
over 1000 was easier than on comments that have 30 or more descend comments.
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Learning rate was also an impactful factor to training of the model. We found that learning rate of
0.3 was too big for the model to converge. Learning rates 0.003 and 0.00003 both converged to a



similar perplexity score, but 0.003 achieved the convergence in about half the number of epochs.
Therefore, 0.003 was discovered to be the best learning rate.

4.3.2 Qualitative Analysis

Unfortunately, the model did not produce comments that were grammatically correct or semantically
meaningful. One example is the following:

e r/news: Price you need you were taken down black over being black.

e r/todayilearned: Remember one reasoned already massive gone. Woman worries to all
voyage soup. We deal guys dead computing. Apparently keep time on it month baby cult
there dangers.

e r/pics: Not solid shadows. Free memes play seat to amsterdam event. Somehow lemon
lightsaber where best used before that is but amateur. So pick employee in women.

We found that the language model is hard to learn, because the vocabulary size is large on Reddit
which tolerates typos, both intentional and not. For example, vocabulary included nice, nieeeeeeeee,
and niceeeeeeeeeeeeeee. The context they are used in and the semantic meaning they convey are not
significantly different, but the model understood them to be completely separate words, and could
not generalize the learning from nice to predicting nieeeeeeeee.

5 Conclusion

5.1 Future Work for Comment Prediction

In analyzing features for comment predictions we tried various ways to include the parent comment,
including passing the comment through a separate LSTM before concatenating, and using the parent
comment to weigh the comment’s words through an attention mechanism. None of these were too
effective, and intuition dictates that there should be some interaction between a parent comment and
a response that may make people respond to the response, and future work would be to find a better
way of incorporating the parent comment (beyond using VADER sentiment features from it).

5.2 Future Work for Comment Generation

We planned to, but did not get the time to, build a sequence-to-sequence model that takes a parent
comment and generates a child comment. This would have provided the advantage of producing
comments that are topically related to the parent comment, thereby being more engaged in the
conversation and inducing more future engagements.

We could try updating the weights of a word when the model sees a misspelling of it. For example,
the model would update the weight for “nice” when it sees "nieeeeeeeee”. However, identifying the
correct spelling of a word is not a trivial task, and many misspellings on the community, such as
”doge”, has a specific meaning that differs from its correct spelling, such as ”dog”.

Another path worth exploring is using pre-trained word vectors as a beginning point, instead of
training word vectors from zero. There are only so many comments on Reddit that have 30 or more
child comments, or 1000 or more score points, so the corpus was too small for the model to gather
a robust understanding of language.
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