Machine Comprehension using Deep Learning

Henry Lin' and Sharman Tan?

L Department of Symbolic Systems, Stanford University
2Department of Computer Science, Stanford University
{henrylnl, sharmant}@stanford.edu

March 21, 2018

Abstract

Machine comprehension is one of the most interesting tasks for Natural Language Pro-

cessing (NLP) and the field of machine learning overall.

Many of the recently successful

methods involve the use of word embeddings and different variations of Recurrent Neural Net-
works (RNNs). In this paper, we explore the performance of a Bi-Directional Attention Flow
(BiDAF) network alongside a bi-directional LSTM encoder and character-level embeddings.
We then evaluate our approach on the Stanford Question Answering Dataset (SQuAD), and
we achieve a F1 score of 74.862 and an EM score of 64.230 on the test set.

1 Introduction

Machine comprehension is one of the many sub-
fields of NLP that has gained substantial trac-
tion in recent years as deep learning continues to
grow in popularity. The problem involves a ma-
chine or model that is given a paragraph of infor-
mation, called the context, and a query as input,
and the machine works to extract the correct an-
swer to the question from the context paragraph.
The most recent and successful deep learning
approaches have involved leveraging advanced
forms of RNNs as well as pretrained word em-
beddings to achieve high accuracy on SQuAD.
Often times, models use an attention mechanism
that allows the program to hone in on a small,
relevant part of the context to focus on the in-
teraction between the context and query.

In this paper, we detail the bi-directional at-
tention flow (BiDAF) implementation alongside
several other improvements and modifications
that we implemented to improve our model’s
performance. While they varied in impact, some
of our modifications include learning character-
level embeddings, conditioning the end location
probability distribution on the start location
probability distribution, and implementing bi-
directional GRU vs. LSTM layers.

2 Related Work

Since the release of SQuAD with a publicly avail-
able leaderboard, there have been significant

advancements in the field of machine compre-
hension in recent years [1]. The most success-
ful models have approached human level per-
formance on the dataset, and there are several
common themes in the approaches spearheaded
by different teams. Many of the top performing
programs utilize some type of attention mecha-
nism within their machine to help model the in-
teractions between the queries and contexts [2].
A traditional encoder-decoder RNN model
faces a bottleneck in the last layer of the encoder,
since that single layer is responsible for holding
the entire input’s information. Attention layers
bypass that bottleneck by placing emphasis on
different parts of the inputs to better capture
information. The success of attention layers in
many NLP tasks has led to it becoming a key
component of many state-of-the-art models.
One of the most successful attention models
is Bi-Directional Attention Flow (BiDAF) [2],
and it is the cornerstone to the machine compre-
hension model that we implement in this paper.

3 Task Definition

Given a context paragraph and a question, our
model’s task is to output the answer to the ques-
tion by signifying the start and end positions
of the answer, which are contained within the
context. Formally, the context is represented as
C = c¢1,..,cn and the question as @ = q1, ..., gy -
The model then outputs pstart, Pend € C, Tepre-
senting the probability distributions of the pos-



sible start and end locations of the answer to the
question.

4 Model

4.1 Bidirectional GRU (Baseline)

The baseline model is a bidirectional GRU con-
taining an RNN encoder layer that encodes the
context and the question into hidden states. An
attention layer combines the context and ques-
tion representations, and the output layer ap-
plies a fully connected layer and two separate
softmax layers to compute the start and end lo-
cations of the answer span.

4.2 Simple BiDAF

Our first improvement to the baseline implemen-
tation is what we call a Simple BiDAF layer, a
simplified version of the BiDAF layer described
in the paper [2]. Rather than computing the de-
scribed similarity matrix, which is computation-
ally expensive to compute, we perform a simple
matrix multiplication between the context and
question embedding matrices and use the result-
ing matrix S’ € RVN*M as our similarity matrix
(where N is context length and M is question
length). This computation is as follows.

S =cQT

C € RN*? is the matrix that holds a context
hidden state in each of its columns, Q € RMx*?
is the matrix that holds a question hidden state
in each of its columns, and b is the batch size.
Once we have computed S, we follow the remain-
der of the implementation details for the more
complex BiDAF layer (described in the follow-
ing section). Intuitively, although we compute
S through a simple matrix multiplication unlike
the more complex BiDAF implementation [2] ,
we are still encoding information about each ¢;
and q; in S’L_‘]

In our final implementation, however, we re-
place our Simple BiDAF layer with the more
complex BiDAF layer detailed in the paper [2]
to maximize our F1 and EM scores.

4.3 Bidirectional LSTM with

BiDAF

Figure 1 displays the general architecture of
our final model, which consists of character,
word, and context embedding layers as well as a
BiDAF layer, a modeling layer, and an output
layer.

4.3.1 Word and Character Embedding
Layers

To better account for the morphology of words
and to better handle words outside of our vocab-
ulary, we implement a character-level embedding
layer much like the layer described in the paper
[2]. We implement a single-layer character-level
CNN that trains the character-level embeddings
of all 100 printable string characters in Python,
which includes all uppercase and lowercase char-
acters of the alphabet as well as all digits and
commonly used punctuation. We map each in-
put word to a vector space using the CNN. More
specifically, we take our trainable character-level
encodings e1, ..., e100 € R% and we compute hid-
den representations hi, ..., higo € R’ from win-
dows of characters [¢;—g, ..., Ci, ..., Ci+k] centered
at position ¢ and with window size k. Then, we
apply element-wise max pooling on the hidden
states to obtain the character-level encoding of
each word. Figure 2 visualizes the character-
level embeddings we learn for each of the 100
characters.

The word embeddings are fixed, pretrained
100-dimensional GloVE vectors, and we concate-
nate the character-level and word-level embed-
dings of each word to obtain the inputs to our
contextual embedding layer.

4.3.2 Contextual Embedding Layer

The contextual embedding layer is a 1-layer bi-
directional LSTM that accounts for the tem-
poral relationships between words. The LSTM
takes our concatenated embeddings as input and
outputs our context hidden states ci,..,cy €
R*" and our question hidden states ¢1, ..., qas €
R?k respectively. N is the number of words in
each context, M is the number of words in each
question, and h is the hidden vector size. We
pad or truncate the contexts and questions to
be N and M words long, respectively.

4.3.3 Bidirectional Attention Flow Layer

For the attention flow layer, we implement a the
BiDAF layer described in the paper [2], which
allows attention to flow from contexts to ques-
tions as well as from questions to contexts. The
context to question (C2Q) attention informs us
of the query words that are most strongly related
to the context words, while the question to con-
text (Q2C) attention informs us of the context
words that are most similar to a query word.
This implementation of BiDAF differs from our
Simple BiDAF implementation in that we define
the similarity matrix S € RV>*M by finding the
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Figure 1: Visualization of Model Architecture [2]

\
%
0.75 - )
0504 5 >
il 6 .
0.25 2 .
0.00 - 74 e
8 (
3| o '
—0.25 - &
a
—0.50 - 3 [E
—-0.75 -
—1.00 -
J

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 2: Visualization of Trained Character Embeddings



similarity score S;; for each pair (c;, g;) of con-
text and question hidden states [2] as follows.

Sij = whleigi;ci0q] € R

In the equation for S;; above, wyiy, € RSk
is a weight vector. We then use S to compute
C2Q) attention by taking a row-wise softmax of
S to obtain attention distributions that we use
to take weighted sums of the question hidden
states ¢; to get the C2Q attention outputs a;.

We compute Q2C attention outputs by tak-
ing the max of each row of S corresponding to
each of the N context locations to get a vec-
tor m € RN, which is the attention distribution
[ over the context hidden states. Then, use [
to take a weighted sum over the context hidden
states to get the Q2C attention output ¢’. Over-
all, the BiDAF layer outputs a vector b; € R%"
that is the concatenation of the context hidden
state ¢; and the attention outputs a; and ¢’ from
the C2Q and Q2C attention layers respectively
foralliel,...,N.

4.3.4 Modeling Layer (M)

The modeling layer is a 1l-layer bi-directional
LSTM that takes the outputs of the BIDAF layer
as input and outputs a matrix B € RN *2?" which
is then used in the output layer. The purpose
of the modeling layer is to help capture informa-
tion about each context word in relationship to
not only the rest of the context paragraph, but
also the query.

4.3.5 Output Layer - Conditioning End
on Start (CES)

Our implementation of CES is inspired by the
paper [3], but we do not implement the 2-layer
RNN model suggested in the paper.

First, we concatenate the matrix B from the
modeling layer to the hidden states of the con-
text words and subsequently pass it through a
fully connected layer with ReLU activation. The
resulting matrix B’ € RV *2" is then used to cal-
culate the probability distributions for the an-
swer’s start and end positions. We do this by
first calculating the start position’s probability
distribution through a simple softmax layer, as
follows.

Pstart = Softmal‘(WstartB, + bstart) (= RN

Then, we condition the probability distribu-
tion for the end location on the start location
probability distribution. In theory, this may
lead to some improvement when calculating the
answer, since the start location distribution ac-
tually does have a direct impact on the end dis-
tribution (e.g. high probability answer starts

later in context means high probability answer
also ends very late in the context).

To condition the end location’s probability
distribution on that of the start location, we first
find as¢qrt, the attention output for the start po-
sition. To do this, we compute the weighted sum
of the entries in B’ corresponding to each of the
N context locations, using psiar: to define the
weights, as follows.

s / /
Astart = pstartl Bl + + pstartN BN

Then, we append astqr+ to each of the en-
tries in B’ corresponding to each context loca-
tion, and we pass this modified B’ (call it B")
through a simple softmax layer to get the end
distribution pe,q, as follows.

B = {[bll, astart]v remy [bGV’ G‘Start]}
Dend = SoftmafE(WendB” + bend) (S RN

Because asiqr¢ incorporates the start proba-
bility distribution and B” that we use to predict
the end position incorporates asiqr¢, We are con-
ditioning the probability distribution for the end
location on the start location probability distri-
bution.

4.3.6 Determining Start and End with
Smart Span Selection

Using start and end distributions ps¢q.+ and pepnq
over the context paragraph, we calculate a joint
probability matrix to determine the most likely
start and end for the answer. Both probability
distributions have dimension N, so we compute
the joint probability matrix by multiplying the
two together to form a matrix with dimensions
N x N. We then zero out the triangle of val-
ues below the main diagonal, because the end’s
word position cannot be before the start word’s
position. With the resulting matrix, Then, us-
ing a simple argmaz function on the resulting
matrix, we find the most probable start word
and end word locations.

5 Experiments

5.1 Dataset

We use the Stanford Question Answering
Dataset (SQuAD) to train, validate, and test
our model. SQuAD is a machine comprehension
dataset drawn from a large number of Wikipedia
articles. For each example in the dataset, there
is a context paragraph, a query, and possibly
multiple human responses to the query drawn
from the context. The dataset has over 100,000
examples and is a very robust dataset to evalu-
ate our model’s performance on.



5.2 Simple BiDAF

From implementing the Simple BiDAF layer, we
observe an increase of 13.81 in our F1 score and
an increase of 11.949 in our EM score on the
dev set. Although our Simple BiDAF imple-
mentation is much simpler than the more com-
plex BiDAF layer implementation [2], the Sim-
ple BiDAF layer still significantly increases our
F1 and EM scores from the baseline implemen-
tation. This may be because even the simple
matrix multiplication of the context and ques-
tion embeddings computes dot products that en-
code information from both the contexts and the
questions.

5.3 Character CNN
directional LSTM

Following the Simple BiDAF layer, we im-
plement a single-layer character-level CNN to
learn character embeddings, and we also con-
vert the baseline’s bi-directional GRU contex-
tual embedding layer to a bi-directional LSTM
layer. This results in an increase of 3.162 in
our F1 score and an increase of 3.482 in our
EM score. This improvement may be due to
the additional morphological information that
our learned character embeddings encode, as
well as the higher level of complexity of the bi-
directional LSTM model compared to the bi-
directional GRU model.

and Bi-

5.4 Multilayer Character CNN

We also attempt to learn the character embed-
dings using a multilayer CNN instead of a single-
layer CNN. The multilayer CNN did not perform
any better than the single layer and was signif-
icantly more computationally expensive, so we
use the single-layer CNN for our final model. We
tried sigmoid and ReLU activation functions in
addition to a shrinking hidden size for each layer
of the multilayer CNN, but in the end, the single-
layer CNN more efficient and produced more ac-
curate results.

5.5 Conditioning End Distribu-
tion on Start Distribution

(CES)

Next, we condition the end location distribution
on the start location distribution, replacing the
baseline’s implementation that determines each
of the distributions independently. This addi-
tion did not noticeably change our F1 and EM
scores on the dev set. In fact, it slightly de-
creased our F1 score by 0.952 and our EM score
by 1.012. This slight decrease may be attributed

to randomness. Because our implementation of
CES involves a simple fully connected layer and
may not significantly change the end location
distribution, we are not very surprised about
these results.

5.6 BiDAF

The computational efficiency of our Simple
BiDAF layer allowed us to quickly outperform
the baseline implementation, making way for our
conversion from a bi-directional GRU to a bi-
directional LSTM and our addition of character-
level embeddings. These additions improved our
F1 and EM scores on the dev set from 43.169 and
34.134 (baseline) to 60.141 and 49.565, respec-
tively. At this point, we decided to replace our
Simple BiDAF implementation with the more
complex BiDAF implementation detailed in the

paper [2].

5.7 Smart Span Selection

The final step that further improved our model
was smart span selection using a joint probabil-
ity matrix. This addition did not require any
more training since the model had already been
trained — it simply worked with the calculated
probabilities differently. By having the output
start and end depend on the joint probability,
we raised both the F1 and EM score by a notice-
able amount. Our F1 and EM scores on the dev
set increased by 2.698 and 2.204, respectively,
and our F1 and EM scores on the test set in-
creased by 2.556 and 2.203, respectively. These
results confirm our hypothesis that utilizing a
joint probability matrix instead of independent
start and end probabilities results in more accu-
rate answers in many cases.

5.8 Simple BiDAF with Modeling
Layer (M)

Our final model (BiDAF/Bi-LSTM/Char
CNN/CES/Modeling/Smart Span) produced
our highest F1 and EM dev scores of 74.649
and 63.765, but we did notice that our BiDAF
model without an LSTM modeling layer re-
sulted in lower scores than our Simple BiDAF
model without the modeling layer. Therefore,
we added the LSTM modeling layer to our Sim-
ple BiDAF model (which included the Bi-LSTM
contextual embedding layer, character CNN,
CES, and smart span selection) to see how the
Simple BiDAF with the modeling layer would
compare to the more complex BiDAF with the
modeling layer.

The learning curves for dev loss, F1 score,
and EM score for the Simple BiDAF and the



more complex BiDAF models are displayed in
Figure 3. Surprisingly, for the first several thou-
sand iterations of training, Simple BiDAF’s F1
and EM scores were much higher than the more
complex BiDAF model’s, and Simple BiDAF’s
loss was also much lower than the more com-
plex BiDAF model’s. However, after approxi-
mately 8,000 iterations, Simple BiDAF’s F1 and
EM scores and loss converged to around those
of the more complex model. Ultimately, Sim-
ple BiDAF produced dev F1 and EM scores of
73.979 and 63.160, respectively, just 0.670 and
0.605 points below the dev scores of the more
complex model. This indicates that the Simple
BiDAF model performs very well on SQuAD, de-
spite our notable simplification of the similarity
matrix in our Simple BiDAF layer implementa-
tion.

5.9 Hyperparameters

We conducted a hyperparameter search over
learning rate, embedding size, and batch size
to find the optimal hyperparameter settings for
our model. Ultimately, we settled upon 100-
dimensional GloVe vectors, a learning rate of
0.0007, and a batch size of 35. We found that
other GloVe embedding sizes did not increase
the performance of our model, and increasing
learning rate by too much often resulted in the
model diverging. Using a grid-style search, we
may have discovered different hyperparameters
that optimize our model’s performance.

6 Error Analysis

6.1 Deciding Precise Boundaries

The text in blue is the predicted answer, the
text in red is the true answer, and the text in
purple is the overlap between the predicted and
true answers.

Context: "... von lettow conducted an ef-
fective guerrilla warfare campaign, living off the
land , capturing british supplies , and remaining
undefeated ..."

Question: how did von lettow conduct his group
?

Predicted Answer: an effective guerrilla war-
fare campaign

True Answer: effective guerrilla warfare cam-
paign , living off the land , capturing british
supplies , and remaining undefeated

As the above example exemplifies, our model
has some difficulty determining precise start and
end locations for the answer — when an answer is

long or divided by commas, our model may not
predict the exact section that constitutes the an-
swer. Decisions involving answer start and end
locations are especially difficult when longer an-
swers are expected. This is especially true of
"Why" questions, as their answers usually in-
volve providing reasons and explanations of ac-
tions. Therefore, our model has more difficulty
correctly answering "Why" questions and ques-
tions that expect long answers in general.

6.2 Multiple Correct Answers

The text in blue is the predicted answer and the
text in red is the true answer.

Context: "the immune system is a system of
many biological structures and processes within
an organism that protects against disease . to
function properly , an immune system must
detect a wide wvariety of agents , known as
pathogens , from viruses to parasitic worms ..."
Question: what does the immune system pro-
tect against ?

Predicted Answer: disease

True Answer: a wide variety of agents , known
as pathogens , from viruses to parasitic worms

From the context and the wording of the
question, "disease" seems to be an obvious an-
swer; therefore, it is not surprising that our
model predicts "disease" as its answer. How-
ever, the true answer comes from a more de-
scriptive section of the context given. In such
situations in which multiple answers are possi-
ble, our model’s answer may be considered in-
correct even though it is actually a valid answer
to the question.

6.3 Character Embeddings

Shown in Figure 2 is a visualization of the
trained character embeddings used in the model.
We used an embedding size of 20 that was then
trained using a single layer CNN with a hid-
den size of 100. As the visualization shows, the
character embeddings do cluster together with
similar characters after training the model. The
clearest evidence of this is when looking at the
center where all the letters have congregated.
The next clustering occurs with the numbers
that seem to dot the left side of the graph. There
is not as much differentiation between the let-
ters as we thought there would be, and this may
be a contributing factor to why the character
CNN feature did not improve performance sig-
nificantly. This may be due to the size of the
training data or the embedding size; in a fu-
ture model, it would be interesting to test pre-
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Experiment Dev F1 Dev EM Test F1 Test EM
Baseline 43.169 34.134 - -
Simple BiDAF/Bi-GRU 56.979 46.083 - -
Simple BiDAF/Bi-LSTM/Char CNN 60.141 49.565 - -
Simple BiDAF /Bi-LSTM/Char CNN/CES 59.189 48.553 - -
BiDAF/Bi-LSTM/Char CNN/CES/M 71.951 61.561 72.306 62.027
BiDAF/Bi-LSTM/Char CNN/CES/M/Smart Span 74.649 63.765 74.862 64.230
Simple BiDAF /Bi-LSTM/Char CNN/CES/M/Smart Span  73.979 63.160 - -

Figure 4: F1 and EM Scores by Experiment
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trained character embeddings or a larger embed-
ding size.

7 Conclusion and Future

Work

In this paper we explored the capabilities of the
BiDAF model applied to the SQuAD dataset
and we were able to achieve strong results using
our implementation. The outcomes of the exper-
iments highlight different improvements made
by multiple model adjustments and modifica-
tions, and this can be be continued in the future.
The biggest jump in our model’s performance
came from the BiDAF model and the subsequent
modeling layer, so we are interested in investi-
gating the performance of a model integrating
the BiDAF layer along with other attention lay-
ers.

Our model containing our Simple BiDAF
layer and the following modeling layer produced
final scores just under those of our final im-
plementation despite our significant simplifica-
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