Detecting Depression Through Tweets

Diveesh Singh Aileen Wang
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Stanford, CA 94304 Stanford, CA 94304
diveesh@stanford.edu aileenl5@stanford.edu
Abstract

This paper aims to predict depression given a Twitter user’s tweet(s). We create
our own dataset by scraping tweets off various Twitter pages, and label them with
the aid of the polarity score generated from Textblob’s python package. Then, we
construct several deep learning models (RNN, GRU, and CNN) to generate predic-
tions on this dataset. For these models, we examine the effects of character-based
vs. word-based models, and pretrained embeddings vs. learned embeddings. We
find that the best-performing models are word-based GRU, with 98% accuracy,
and word-based CNN, with 97 % accuracy.

1 Introduction

1.1 Motivation

Analyzing the content of Tweets has become an increasingly more popular method to understand
and make predictions about human social behaviors. Given the frequency with which Twitter is
used by the broad population, it is a very rich source of data that can be used to analyze a variety
of these behaviors. For this project, we chose to focus our efforts on how apparent is it from an
individual’s Tweets that they are suffering from depression. Depression is a significant subject of
interest since it is a mental illness that adversely affects a large part of the world population (350
million people worldwide), and is often associated with other mental disorders. Depression itself
is a multi-faceted illness, and therefore it affects different people in different ways and to different
extents.

Detecting depression through NLP is a more convoluted task than simple sentiment analysis,
since the labels “not-depressed/depressed” cannot be equated with the labels “happy/sad”. Further-
more, indications of depression in tweets are often subtle, and thus not immediately obvious to the
human reader. These subtle indications, however, may be reflected in the nuances of someone’s
language, which we predict can be captured by a variety of deep learning methods. By using a wide
set of examples, along with state-of-the-art NLP techniques, we hope to create a robust model that
is sensitive to the variations of depression on an individual basis.

The findings of this project will be useful in predicting depression in individuals, even if
they are unwilling to discuss their issues with a professional. Health professionals will be more
aware of which specific demographics are more affected by depression, and potentially create
depression awareness/prevention messages to help those demographics.

1.2 Problem Definition

Our project aims to do the following:

e Generate labeled tweets dataset from scratch

o Construct neural-based architectures (RNN, GRU, CNN) to predict depression

Tune model parameters to optimize performance

Analyze performance of character-based vs. word-based models

Analyze performance of pre-trained embeddings vs. learned embeddings

2 Background and Previous Work

There has been a lot of previous work done on sentiment analysis of Tweets using a variety of
standard NLP techniques. Specifically a lot of these papers discussed the concept of generating
embeddings for words and/or characters, and then feeding those embeddings into the model for
training purposes. One paper, [4], talks about using a deep convolutional network to do sentiment
analysis of short texts i.e. Tweets. The main issue in this type of analysis is that many Tweets
lack context, and therefore require some combination of text analysis and prior knowledge to be
able to effectively classify a piece of text. First, it extracts word and character level embeddings
for all the Tweets; with this information, it then trains convolutional layers to generate sentence
level features by analyzing all the windows of the sentence. This vector of sentence level features
is passed through 2 normal neural network layers, and the output of the final layer is used as the
prediction. This paper was useful in formulating our approach because it discussed effective ways
of using character embeddings in generating sentence-level embeddings.

There were some papers that took a more creative approach to solving the problem of Tweet
analysis. Specifically, a paper from MIT [6] coins the term Tweet2Vec, as a technique to learn Tweet
embeddings. It learns these embeddings via a character-level CNN-LSTM encoder-decoder. At its
core, the way it encodes the data is using a series of convolutional layers to extract features at the
character level, and then passing these features sequentially through an LSTM layer. To decode the
data, it passes the data through two LSTM layers, and the output could be used to predict the next
character in the sequence.

3 Dataset

Our dataset consisted of 13,385 tweets scraped from various Twitter pages, where each tweet is
labeled with 1 or 0; 1 indicates the user who posted the tweet suffers from depression, 0 indicates
the user who posted the tweet does not suffer from depression. The train set (train.csv with 10,708
tweets) and dev set (dev.csv with 2,677 tweets) are randomly shuffled and selected from the above
dataset.

3.1 Collecting the Dataset

We collected the dataset using a few Twitter scraper utilities we found online, including [5]. All
scraped tweets are originally unlabeled.

To collect potentially positive examples, we searched for pages on Twitter that had some-
thing to do with depression; specifically, we would require that the word “depression” was
somewhere in the user name or title of the page. Examples like "Depression Quotes”, “Depression
Notes”, and "Damn Depression” were all useful pages in our dataset collection. We made sure not
to scrape Tweets from pages that were more geared towards depression awareness, or those pages
managed by organizations that are working to help people with depression, as a lot of these pages
were not owned by users who were potentially depressed. After inspecting the content of the pages
we had shortlisted as ”valid” pages, we collected their corresponding tweets and compiled them
into a list of potentially positive examples.

For potentially negative examples, we pulled examples from a wide range of pages (the news,
sports, dance teams etc.); we also made sure to get pages that had to do with other emotions (anger,
happiness, etc.), so that our model could be able to distinguish between emotions due to depression
and other emotions.

After collecting the tweets, we labeled them manually; to aid our labeling, we wrote a script
that uses the Textblob python package to calculate a polarity score for each tweet; based on these
scores, the script labels each tweet as 1 for depressed, 0 for nondepressed. After we run this script,
we manually filter through all the tweets to check if the predictions made by the Textblob algorithm
are reasonable, and update the labels accordingly.

An example “depressed” tweet looked like this:

it sucks, doesn’t it? feeling like you’re not good enough, no matter how hard you try.

3.2 Cleaning the Dataset

3.2.1 Filtering Irrelevant Examples

Many of the examples in the initial dataset were not actually relevant for our use case. This is
because several of the examples had something like ”Here’s a new YouTube post!” or ”Account got
suspended for a while, but now we’re back!” that did not seem to indicate anything about the user,
their thoughts, or their situation. We filtered our entire dataset to take out these arbitrary examples.

3.2.2 Sanitizing Individual Examples

For the remaining examples, we sanitized each tweet so that they did not contain irrelevant text,
so they would be suitable input for our various models. One category of irrelevant text, for both
word-based and character-based models, are hyperlinks, because they do not add much to the actual
content of the tweet. On top of that, hyperlinks do not have a corresponding word embedding from
Word2Vec or GLoVe, nor could we have generated useful word level embeddings for these hyper-
links. Another category of irrelevant text, for word-based models only, is hashtags and miscellaneous
symbols, because similarly to hyperlinks, they do not have corresponding word embeddings.

4 Technical Approaches

4.1 Baseline: Logistic Regression and SVM

For our baseline algorithm, we used scikitlearn logistic regression with the following parameters
e Regularization C' = 0.1 and Solver = "lbfgs’.

and SVM classifiers with the following parameters
e Kernel="rbf”and Penalty for the error term C' = 0.025

to perform binary classification. First, for each tweet in the dataset, we use the Word2Vec function
from the gensim python library to to create word embeddings for each word within the tweet, repre-
sented as a 100 dimension feature vector. Then, we get the feature vector for each tweet by averaging
all the words vectors within the tweet. Finally, we apply our baseline classifiers to the collection of
tweet feature vectors and the corresponding labels to train and test our baseline models.

4.2 Word-based RNN Model

Once we had established our baseline, the first model we implemented was a simple RNN model.
RNNSs are popular for tackling NLP tasks because they process text in a sequential manner, and they
can take in any length input.

We preprocessed the train.csv and dev.csv files, so the input to the RNN model was a list of
(tweet, label) pairings. Each tweet was represented as a vector of words, where each word is
represented with a discrete ID that can be used to look up its Word2Vec word embedding. Each
tweet was padded to a maximum length of 30 words.

For each timestep ¢ of the RNN, we fed in a batch of words that correspond to the t** word

for each tweet in the current batch. The final hidden state, h, was then fed through another
neural network layer, followed by the softmax function, from which the prediction was made. We
computed the cross-entropy loss between the predicted labels and the true labels. We used the
Adam optimizer during training to minimize this loss as follows:

r® = WhED 4+ Wz, + by
0 = Uh(trmat) 4 p,

eO
Z?:l el

CE = yilog(i):)
=1

softmax =

4.3 Word-based GRU Model

Our next update to the model was changing the basic cell unit from an RNN cell to a GRU cell,
while still using word-level embeddings. Using GRU cells are more powerful than using vanilla
RNN cells because they incorporate two additional gates (update gate and reset gate), which gives
the model more flexibility in processing input; GRUs can create of shortcut connections between
text separated by an arbitrary number of timesteps, allowing the model’s memory to capture more
long-term dependencies in text. GRU cells are computationally more efficient than their variant,
LSTM (long short term memory) cells.

Outside of cell type, everything else, from preprocessing the data to training/evaluation tech-
niques remained the same as the simple RNN model. The GRU cell model works as follows:

update gate: z = o(z,;U, + h(t—l)Wz)
reset gate: r = o(z: U, + h(t_l)Wr)
new memory: h") = tanh(az,Up + (h™ - r)Wy)
final memory: RO = (1-2z)- R 4 . gD

4.4 Character-based GRU Model

In addition training models that used word embeddings, we wanted to explore the effectiveness
of using character level embeddings. Several papers had suggested that using character level
embeddings, especially for content like Tweets, actually capture more cases where users repeat
letters to indicate emphasis (e.g “helllloooooOO0”), and also takes into account the fact that a
hashtag can indicate something important about the sentence; our word-based model had cleaned
out hashtags, but this character, among other characters, was used in this character-based model.

The character embeddings (for the normal ASCII range) were derived from the GloVE word
embeddings, as inspired by [3]. We calculate the embedding for a specific character as follows:
Every time the character appears, we infer its embedding from the parent embedding. We add
all these “inferred” character embeddings together across the whole corpus, and divide by the
character’s frequency, resulting in the final character embedding. Figure 1 shows the character
embeddings, when put into a tSNE visualization.

Similarly to the word-based RNN model and GRU model, we preprocessed the train.csv and
dev.csv files, so the input to the RNN is a list of (tweet, label) pairings. However, each tweet was
now represented as a vector of characters, where each character was represented with a discrete ID
that can be used to look up its character embedding. Each tweet was padded to a maximum length
of 150 characters. Training and evaluation techniques remained the same as the word-based RNN
model and GRU model.

Projection of 300D Magic Card Character Vectors into 2D Space (30D, perplexity = 10)

Characters closer to each other are more similar in usage context.

k §
pP o Aa %(K
n w
N
+_ {x i hy
\'
1 l#— 4 B UI X
] [} 5 E eo X
a lowercase
G 903 ” q
i) 4 3 &3 a uppercase
((o Q 5 ”
) = e "
M 9 6 Z a numeric
o
m i b u * a punctuation
% T r ‘ d
V Ry
A Yy
z
sS

Figure 1: Character embedding tSNE Visualization (from [3])

4.5 Hyperparameters

For the above 3 RNN-based models (basic RNN with words, GRU with words, GRU with chara-
caters) we used the following hyperparameters: Learning Rate: .001, Epochs: 10, Dropout Proba-
bility: 0.5, Minibatch Size: 32, Hidden State Size: 300.

4.6 Using a Word-based CNN Model to Generate Sentence Embeddings

The final model that we built was a convolutional neural network, inspired by [1] and [2]. Although
they are most common in computer vision, CNNs have recently been applied to NLP tasks and have
shown promising results in text classification.

We preprocess the train.csv and dev.csv files similarly to the word-based RNN and GRU
models. A major difference between this CNN and other RNN-based models are that this model
learns the embedding matrix W at training time, while RNN-based models used pretrained
embeddings.

Figure 2 shows a simple visualization of the CNN architecture. We use different filter sizes
(3, 4, 5) to slide over 3, 4, 5 words at a time, respectively. For each filter size, we calculate the
outputs of the convolution layer, and apply the ReLU nonlinearity and max-pooling on these
outputs. We combine all these pooled features from each filter size to form our feature vector on
the final layer. We add a dropout layer on this feature vector with a probability of 0.5, and use cross
entropy to calculate the loss.

wait
for
the

video

and
do
n't

rent

it

|] L | L L |
x Convoluti er with Max-over-time Fully connected layer

multiple fi hs and pooling with dropout and
feature

softmax output

Figure 2: Visualization of CNN (from [2])

5 Experiments, Results and Analysis

5.1 Quantitative Analysis

To quantitatively evaluate our models, we mainly used Accuracy(Acc), Precision(P), Recall(R), F1
score, and confusion matrix (CM) defined as follows.

tp+1in
Acc =
tp+tn+ fp+ fn
ip
P=——
tp+ fp
ip
R=——
tp+ fn
2xXx PxR
F1="---=
P+R
_ |tn fp
CM_[fn tp]

Where tp, tn, fp, fn are the number of true positive, true negative, false positive, and false negative
respectively. In addition, We measured training accuracy and validation accuracy throughout the
training process for each of the models, along with the training loss and validation loss.

1.0

0.8

0.6 0.97 4

measurement
measurement

0.4

—— Accuracy —— Accuracy
0.2 —— Precision 0.95 —— Precision
— Recall — Recall
— F — A
0 2 4 6 8 0 2 a 6 8
epoch epoch
(a) Depression prediction using RNN (b) Depression prediction using GRU

35

— Loss
— Accuracy

3.0

0.9
25

0.8 4 2.0

measurement
measurement

Lk e e

—— Accuracy
0.6 ~——— Precision

— Recall 05
— R

: . , ; 00 ‘

0 2 4 6 8 0 200 400 600 800 1000

epoch Steps
(c) Depression prediction using GRU with CHAR (d) Depression prediction using CNN

Figure 3: (a) - (c): Measurements of Accuracy, Precision, Recall, and F1 score. (d) Loss and Train
Accuracy

Label Acc P R F1 Label Acc P R F1
Nondepressed | 0.90 | 0.87 | 0.91 | 0.89 Nondepressed | 0.98 | 0.97 | 0.99 | 0.98
Depressed 0.90 | 0.92 | 0.89 | 0.90 Depressed 0.98 | 0.99 | 0.97 | 0.98
(@ (b)
Label Acc P R F1 Label Acc P R F1
Nondepressed | 0.94 | 0.92 | 0.96 | 0.94 Nondepressed | 0.97 | 0.97 | 0.98 | 0.98
Depressed 0.94 | 0.96 | 0.93 | 0.94 Depressed 0.98 | 0.99 | 0.98 | 0.99
© (@

Table 1: Best Measurements for (a) RNN, (b) GRU, (¢) GRU with CHAR, (d) CNN.

5.2 Qualitative Analysis
5.2.1 Analysis of Basic RNN vs. GRU on Word Embeddings

Using a GRU cell performed substantially better than using a basic RNN cell when we used word
embeddings. This is likely due to the fact that using an RNN cell may bias the model into paying
more attention to the words that appear at the very end of the sentence, whereas the GRU cell allows
different parts of the sentence to play an active role in deciding the final prediction. A specific tweet
we saw that illustrated this trend well was:

e FEverything sucks. Why do good things always happen to other
people?

In this example, it is clear that the beginning of the tweet is showing some form of frustration, and
is the main indicator in classifying the sentence. The second part of the sentence, while in context
of the first two words, does add some potentially indicative content, but when the RNN cell only
takes the end part of the sentence into account, it almost ignores the first part. Likely due to this
reasoning, the Tweet was misclassified by the RNN cell version, but not by the GRU cell version.

5.2.2 Advantages/Disadvantages of Using Character-Based Embeddings

From Figure 3, we compare the performance of word-based GRU (b) and character-based GRU (c).
Although the performance is slightly lower, we can see that using character embeddings, results
in significantly smoother curves for accuracy, precision, and F1. This is likely due to the fact that
tweets tend to be more idiosyncratic, depending on the person’s posting style, and are limited by
character-count (the current limit is 280 characters, but was originally 140 characters). Thus, indi-
vidual characters, such as hashtags, emphasis on certain letters or symbols, etc. can have a signifi-
cant impact on the semantics of the tweet, making character-based models suitable for tweet-related
NLP tasks. In addition to this, if the majority of the tweet consists of words with extra characters
or symbols, then using a word-based model would not work effectively as most of the words in the
sentence would not have a corresponding embedding

For example, the following tweet from our "non-depressed” class was incorrectly classified with the
word-based model, but was correctly classified with the character-based model. This was likely due
to the extraneous characters present.

e ayoooo anyl tryna get litty???

The main disadvantage of using character-based embeddings is that training time increases signifi-
cantly, since the sequence length inputted into the model is enlarged.

5.2.3 Analysis of RNN-based Models vs. CNN Model

From Figure 3, we can analyze the performance of the word-based CNN model (d). We see that the
CNN'’s performance is comparable to the performance of the best RNN-based models (word-based
GRU and character-based GRU). Even though CNNs are traditionally used for image recognition

tasks and do not store temporal information about the text, the CNN is still able to achieve good
accuracy on our dataset because the convolutions performed by varying convolutional filters allows
the model to learn efficient and useful representations of the text. While this CNN model is able to
capture n-grams up to 5, other models are often unable to capture n-grams greater than 3 without
significantly decreasing computational efficiency. These convolutions allow the CNN to process the
text a lot faster, while word-based RNN-based models must read in the text word by word.

Another major difference between the CNN model and the RNN-based models is that the
CNN learned word embeddings from scratch. Learned embeddings give the CNN an advantage,
since it allows the model to learn the meaning of the words in the context of the dataset. One
common phrase in the dataset was “depression nap”, referring to nap to evade unwanted emotions or
other symptoms related to depression. The learned word embedding of nap” placed more emphasis
on the meaning of “nap” in a depression context, while pre-trained embeddings would focus on the
meaning of “nap” in a more general context. The following tweets from our “depressed” class was
incorrectly classified with the word-based GRU, but was correctly classified with the CNN.

e that was a fun depression nap but maybe i1 should eat that
meal i was supposed to have four hours ago.

e after mixing those hard liquors your g is ready for another
depression nap

6 Conclusion and Further Improvements

6.1 Main Takeaways

The performances of all our models were relatively high, most likely due to the smaller size of our
dataset. The best models for predicting depression in tweets were the word-based GRU model, with
98 % accuracy, and the word-based CNN model, with 97 % accuracy.

Through our experiments, we were able to make several comparisons between the different
models we implemented. GRU cells performed better than RNN cells due to their ability to capture
more long-term dependencies. For GRUs, using character embeddings resulted in more stability
in the model’s overall performance, but using word embeddings resulted in higher final accuracy.
Finally, the CNN model produced comparable results as the high-performing GRU models due
to the efficiency of convolutional filters in capturing sentence-level features, and learned word
embeddings.

6.2 Model Improvements

Our model could use some improvements in future iterations. One worthwhile avenue to explore
would be to use a CNN-LSTM Encoding-Decoding architecture as we had mentioned in a previous
section because that had proven successful while performing sentiment classification. In addition to
this, we could also experiment with a decaying learning rate to improve the stability of some of our
loss and accuracy graphs (in addition to training for a longer time).

6.3 Dataset Improvements

There were several issues with the dataset that, if improved, would have made this project more prac-
tically applicable. The main issue with the dataset was that we were gathering data from tweets and
prescribing a label of ”depressed” or not depressed” based on some relatively loose assumptions of
the Twitter account. While these assumptions were based in logic, it would have been nice to have
a dataset that was hand labeled by people with domain knowledge (ideally, have actual tweets from
those who have been confirmed and known to have depression). If this sort of dataset existed, not
only would we be more confident in our predictions actually being usable in the real world, but it
would have allowed us to uncover more trends (for example, depressed people are not always “sad”
in the traditional sense). Our models, while good at classifying ”depression” as a type of sadness,
would have benefited had a dataset like this existed.

References

[1] Britz D. (2015) Implementing a CNN for Text Classification in Tensorflow. WILDML.
http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/

[2] Kim Yoon (2014) Convolutional —Neural Networks for Sentence Classification.
https://arxiv.org/pdf/1408.5882.pdf

[3] Minimax Char embeddings GitHub. https://github.com/minimaxir/char-embeddings

[4] Santos C.N. & Gatti M. (2014) Deep Convolutional Neural Networks for Sentiment Analysis of Short Texts.
Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical
Papers, pages 6978, Dublin, Ireland, August 23-29 2014. http://www.aclweb.org/anthology/C14-1008.

[5] Twitterscraper library. https://github.com/taspinar/twitterscraper

[6] Vosoughi S. & Vijayaraghavan P. & Roy D. (2016) Tweet2Vec: Learning Tweet Embeddings Using
Character-level CNN-LSTM Encoder-Decoder. ACM. https://arxiv.org/pdf/1607.07514.pdf.

