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Abstract

Question Answering (QA) is a Natural Language Processing task that requires
the machine to capture interactions between a given passage and a question. We
propose a novel hybrid attention network that effectively combines several differ-
ent attention mechanisms. The output of gated additive attention is piped through
a self-attention Layer, and then concatenated with the output of bidirectional at-
tention to form the hybrid attention output, which is processed by a pointer-net
layer. Our single model achieves 72.1% F1 and 61.9% EM on the test dataset.
The ensemble of seven models achieves 74.9% F1 and 65.3% EM.

1 Introduction

Question Answering (QA) is an important task in Natural Language Processing that has wide ap-
plications. In Question Answering, the machine is given a passage (context) and a question, and is
asked to predict the answer based on information in the passage. Question Answering is challeng-
ing because the model needs to be able to capture complex interactions between the question and
the passage and perform reasoning. A major dataset for Question Answering is the Stanford Ques-
tion Answering Dataset (SQuAD) [1], which contains more than 100000 question-answer pairs. In
SQuAD, the answers are guaranteed to appear in the passage, and the model needs to predict the
start and end positions of the answer in the passage.

In this work, we propose a hybrid attention neural network, which is inspired by existing high
performance models such as r-net [3] and BIDAF [4]. Section 2 gives an overview of those existing
models. Section 3 provides a detailed description of our proposed model. Section 4 discusses the
performance of our model, factors that affect the performance, and alternative architectures that we
implemented.

2 Related Work

Two high-performing models on the SQuAD task are r-net [3] and BIDAF [4]. R-net uses two
layers of attention: the first layer is gated additive attention, which produces question-aware passage
representations, and the second layer is self-attention, where the passage representation is managed
to match itself. A pointer-net layer [5] is also used in r-net to provide better answer span selection. In
BIDATF, both context-to-question attention and question-to-context attention are generated to form a
bidirectional attention output.

3 Model Architecture

The architecture of the model is shown in Figure 1. The following subsections describe different
components of the model.
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Figure 1: Model architecture overview.

3.1 Embedding and Encoding Layer

The input questions and passages are represented originally as sparse vectors. We convert these
tokens to dense representations using pre-trained GloVe vectors of 100 dimensions [2]. Our model
then uses a bidirectional GRU layer as the encoder for both the question and the passage. Passage and
question word vectors go through the encoding layer and become passage encodings and question
encodings. The encodings are used by the hybrid attention layer, which we describe next.

3.2 Hybrid Attention Layer

The hybrid attention layer is the core of our model. It is a mixture of two different attention mecha-
nisms those used in r-net [3] and BIDAF [4].

3.2.1 Gated Question-Passage Attention and Self-Attention

In Figure 1, the left two parts of the hybrid attention layer are the two-layer attention mechanism
presented in r-net. Here, the passage and question encodings first go through a gated additive
attention module using a GRU:

vi = GRU(vi y, gate([uf, ct]))

In the above equation, v{ is the hidden state and also output of the GRU. The input at each timestep
to the GRU is the gated concatenation of u!, the current passage encoding vector, and the attention-
pooling vector c¢;, which is computed as:

sk = VTt‘cmh(VV;‘Qu;2 + Wrhuf + whol )

m
= Z softmaz(st)ul
i=1

where u® and u! are question and passage encodings, respectively. V, W2, W.X' W[ are model
parameters to be learned. V' is a vector whose dimension is chosen to be one tenth of the encoding
size of u® and u”. Increasing the dimension of V' will require more memory in computation. At
each timestep ¢, the model takes a token from the passage, and look through the entire question to
come up with the attention-pooling vector ¢;. The model then concatenates ¢; with u! (as introduced
in match-LSTM [5]) and applies a gate:

gt = sigmoid(Wy [uf, ct))



gate([uy ,ci]) = g o [uy i)
where o represents elementwise multiplication. The gated vector is processed by the GRU to output
the gated question-passage attention vy, which is then fed to a self-attention module [3].

55- = VTtanh(ijJP + W2uh)

n
¢t = Z softmax(st)vl

i=1
gt = sigmoid(Wy, [vf,ct])
gate([vf, ci]) = g o [vf, ¢4

hP = BiGRU(hf_l,gate([vf, ct)))

In the above equations, V, W, are the same weights as before, and W}, W2 are new model param-
eters to be learned. To implement this module, a custom GRU cell is defined, which remembers the
entire question encoding matrix and performs additive attention using the input passage encodings
and the previous hidden states.

3.2.2 Bidirectional Attention

The right two parts of the hybrid attention layer in Figure 1 represent the bidirectional attention
module [4]. In this module, we first compute a similarity score for each passage position ¢ and
question position j:

Sij = (uP)TUJQ

K2

Then we compute the passage-to-question attention a and question-to-passage attention c:

ot = softmax(S;..) a; = Za;u;"?
J

m; = max;S;; B = softmax(m)
c= Z Biuf

The output vector for each passage position 7 is a concatenation.
P P P
bi = [u; ,ai,u; oa;,u; oc

The output of the two attention mechanisms are concatenated to form the output of the entire hybrid
attention layer.
REtn = [, b

3.3 Pointer-net Layer

This concatenated output of the hybrid attention layer is fed to a pointer-net layer [3], which outputs
the probability distribution for the start and end positions. In the pointer-net layer, a GRU is used so
that the end position distribution is conditioned on the start position distribution.

st = VTtanh(WERI%™ + Wh3) al = softmaz(s})

a} is the probability distribution of the start position. We then use the GRU to generate the end
position distribution based on the start position distribution. Because we only need the start and end
positions, we use the boundary model in [5], and apply the GRU for one step:

n
= E a}h?“"
i=1

(1L = GRU( 8, 01)
s2 = VTtanh(WE %™ + W2he)

a? = softmaz(s?)
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Figure 2: Histograms for question, context, answer lengths in training set.

a? is the probability distribution of the end position.

The initial state h§ of this GRU is the question-pooling vector, which is a dense representation of
the entire question, as described in r-net [3].
20l — VTt anh(WRuE + WEV.)
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In implementation, V7 is the same as in the gated question-passage attention and self-attention
models described above. W2, I/V‘(}2 , V@ are new parameters to be learned in this layer. After ob-

taining the start and end distributions a', a2, we predict start and end positions to be the positions
with largest probability by taking the argmax of the distributions.

4 Results and Discussion

4.1 Implementation Details

Our model is trained and evaluated on the SQuAD dataset. We generated histograms of question,
passage and answer lengths in the training set, as shown in Figure 2. It can be seen that the most
questions are no longer than 25 words, most passages are no longer than 400 words, and most
answers are no longer than 20 words. Because the model processes data in batches, it needs a certain
maximum length for questions and contexts, which it pads the input to reach if the input is shorter
than that. Allowing an unnecessarily long length would be a waste of computational resources. So,
in training, we allowed a maximum question length of 30 words, and a maximum context length
of 450 words. We used Adam optimizer with a learning rate decaying from 0.001 to 0.00001, a
dropout rate of 0.15, and pretrained GloVe vectors of 100 dimensions. We clip the gradient if the
norm reaches 5.

4.2 Results and Effect of Components

We use F1 scores and Exact Match (EM) to evaluate performance of the model. The F1 score is
the harmonic average of Precision and Recall, and measures the amount of overlap between the
ground truth answer and the predicted answer. The EM score measures whether the true answer and
the predicted answer are exactly the same. The overall F1 and EM scores are the average over all
questions. The performance of our model and comparison with BIDAF and r-net are summarized in
Table 1. The dev scores are lower than the test scores because they are measured by comparing the
predicted answer with one ground truth answer only, while in the actual test there are more than one
correct answers provided. Although our model uses mechanisms introduced in BIDAF and r-net, the
performance is not as good as those two models, which could be explained by the following facts:

1. Our model did not use character level embeddings. 2. The gated question-passage attention
module in our model uses one-directional GRU, where r-net uses bidirectional GRU. 3. We only used
one layer of bidirectional GRU for encoding passage and question, while r-net uses three layers [3].
4. In the bidirectional attention module, we used multiplication to compute the similarity matrix .S,



Table 1: Performance comparison with other methods

Model | Dev Fl (%) | Dev EM (%) | Test F1 (%) | Test EM (%)
Our model (single) 65.9 51.0 72.1 61.9
Our model (ensemble) 68.2 61.0 74.9 65.3
BIDAF 77.3 68.0
r-net 84.2 76.5

Table 2: Dev F1 and EM improvement for each component added

Change in model | Dev F1 (%) | Dev EM (%)
Baseline (one basic attention layer) 40 29
Add self-attention 54 38
Add pointer-net layer 57 41
Change basic attention to gated additive attention 65 50
Add bidirectional attention to form hybrid attention 66 51

while BIDAF uses a learned weight vector to compute the similarity between question and passage
[4]. 5. We did not use a modeling layer as in BIDAF.

We also provide a breakdown of important components in our model and their effects in improving
model performance in Table 2. Starting from the baseline (simple one-directional attention model),
we found that the biggest improvements came from adding self-attention layer (dev F1 40% to 54%)
and changing the baseline attention layer to gated additive attention (dev F1 57% to 65%). Adding
the pointer-net layer and constructing a hybrid attention layer were also helpful. We also tried
predicting start and end positions by maximizing the product of start position probability and end
position probability subject to the constraint that the end position is within O to 15 words after the
start position, but did not get further improvements, possibly because the pointer-net layer already
took this relationship into account.

4.3 Attention Analysis

In this subsection, we provide visualizations for one question. The passage is: ”in the centre of
basel, the first major city in the course of the stream, is located the “rhine knee”; this is a major
bend, where the overall direction of the rhine changes from west to north. here the high rhine ends.
legally, the central bridge is the boundary between high and upper rhine. the river now flows north
as upper rhine through the upper rhine plain, which is about 300 km long and up to 40 km wide.
the most important tributaries in this area are the ill below of strasbourg, the neckar in mannheim
and the main across from mainz. in mainz, the rhine leaves the upper rhine valley and flows through
the mainz basin.”. The question is: "How long is the upper rhine plain?”. The answer is 300 km
long” and the model answered this question correctly. Figure 3(a) shows the gated additive attention
intensity for each pair of question token and passage token. The question has 8 tokens (shown as
rows), and the passage has 133 tokens (shown as columns). It can be seen that although the highest
intensity comes from “upper rhine plain’’s attention to “upper rhine” and "high rhine”, the attention
from ”long” to ”300 km long” is also very strong, which enables the model to find the correct answer.
Interestingly, the attention from “long” to “about” and 740 km wide” are also strong, which means
the model has considered answering “about 300 km long” (a decent answer but not the best) or 40
km wide” (a wrong answer that is very similar to the true answer in format), but successfully avoided
them.

Figure 3(b) shows the bidirectional attention similarity matrix S;;. It can be seen that this second
attention mechanism we added to the side of our model captures similar information as gated ad-
ditive attention, but focuses more on the useful information (the signal-to-noise ratio of this one is
higher than Figure 3(a)). For example, now “long” no longer attends to 740 km wide” intensively.
This might be a reason why adding bidirectional attention mechanism helps improve the model
performance.



high upper upper about 40 upper
thine thine thine km, thi
thiough n wide Vafley

high upper upper about 40 upper
i in thine 300 km, thine
thiough km wide Vafley
e 9

Figure 3: Attention visualization for question "How long is the upper rhine plain 7. Zoom in to see
details. (a) gated additive attention. (b) bidirectional attention similarity matrix. (c) self-attention.

Figure 3(c) shows the self-attention intensity 3; e VTtanh(Wﬁvf + W2vF). This is where the
question-aware passage representation output by gated additive attention attends to itself. It can be
seen that here the passage representation focuses on the 75th-90th words in itself, which are “upper
rhine plain, which is about 300 km long and up to 40 km wide”. This shows that after reading and
remembering the question, the model looks at the context again and knows to focus on this part,
which is indeed where the answer comes from. Thus the attention mechanisms are quite reasonable,
interpretable and effective.

4.4 Error Analysis

In this subsection, we categorize some of the most typical mistakes our model makes.

1. The predicted answer says the same thing as the true answer but with slightly longer or shorter
representation. Example:

QUESTION: what type of materials inside the cabin were removed to help prevent more fire hazards
in the future?

TRUE ANSWER: flammable cabin and space suit materials

PREDICTED ANSWER: flammable cabin and space suit

This type of mistakes is not serious. The model’s answer is actually good.

2. The predicted answer contains the true answer but also contains some irrelevant words that a
human answerer would not add. Example:

QUESTION: when forces are acting on an extended body, what do you need to account for motion
effects?

TRUE ANSWER: respective lines of application

PREDICTED ANSWER: their respective lines of application must also be specified in order

In this example, the model should not say “must also be specified in order”. Although the informa-
tion it gives is correct, the output is not natural. Humans are unlikely to answer this question in this
way. Since we want the model to behave like humans, this type of mistake is unacceptable.

3. In addition to the true answer, the predicted answer also contains something that should clearly
be excluded. Example:

QUESTION: in which continent besides asia were major gains made by the british empire in the
late 19th century ?



TRUE ANSWER: middle east

PREDICTED ANSWER: asia and the middle east

Here the model says “asia”, which is clearly wrong because the question says “besides asia”. This
type of mistake is unacceptable.

4. The model fails to realize that two expressions are equivalent. Example:

CONTEXT: during the period in which the negotiations were being conducted, tesla said that efforts
had been made to steal the invention. his room had been entered and his papers had been scrutinized
, but the thieves, or spies, left empty-handed.

QUESTION: according to tesla what had been gone over by the thieves, or spies who entered his
room?

TRUE ANSWER: his papers

PREDICTED ANSWER: empty-handed

Here the model fails to realize that “gone over” is equivalent to ”scrutinized”. The model may think
that ”gone over” means “’left”. This type of mistake can possibly be reduced by training the word
vectors or using higher-dimension word vectors.

5. The model fails because it does not use grammar information. Example:

for a long time , number theory in general, and the study of prime numbers in particular, was seen
as the canonical example of pure mathematics.

QUESTION: besides the study of prime numbers, what general theory was considered the official
example of pure mathematics?

TRUE ANSWER: number theory

PREDICTED ANSWER: canonical

Here, if the model knows that the answer has to be a noun, and should be the subject of “was
seen”, it would not have made this mistake. Adding part-of-speech features and subject-verb-object
relationships may help solve such problems.

4.5 Experiments on Other Possible Architectures

In addition to the final model architecture presented above, we also implemented and tested a number
of alternative architectures. We now give an overview of these architectures and their performance.

4.5.1 Hybrid Attention Model with Coattention

A variation of the model described in Section 3 is to replace the bidirectional attention module with
coattention, as shown in Figure 4.

The coattention layer, as introduced in [6], first applies a non-linear projection to the question en-
codings u®:

u®" = tanh(Wu® + b)
The coattention layer then adds sentinel vectors u(lf ; u(? to the passage and question encodings to

enable the model to attend to none of the token encodings, and then computes the affinity matrix L
from the encodings u, u%.

L= [uP7uéJ]T[uQ 7“(?]

where u’, u® are passage and question encodings, respectively. Then, Context-to-Question Atten-
tion and Question-to-Context Attention are computed from matrix L. The Second-Layer Attention
is computed from the Question-to-Context Attention, and the output is generated by a bidirectional
LSTM whose input is the concatenation of Second-Layer Attention and Context-to-Question Atten-
tion.

This alternative model then concatenates the coattention output with self-attention output to form
the output of the hybrid attention layer. This model achieves a dev F1 score of 0.647 and a dev
EM score of 0.496. This shows that in the hybrid attention architecture, coattention is less helpful
than bidirectional attention, possibly because coattention is very different from the r-net attention
mechanism, and the model has difficulty learning to combine these two mechanisms.
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Figure 5: Two alternative architectures.

4.5.2 Replacing Gated Additive Attention with Bidirectional Attention

Another variation is to directly replace the gated additive attention layer with bidirectional attention,
as shown in Figure 5(a). This model achieves a dev F1 score of 0.651 and a dev EM score of 0.494,
which is not as good as the hybrid model proposed in Section 3, possibly because it only uses one
attention mechanism and is not as expressive as the hybrid model.

4.5.3 Alternative Ways of Combining Bidirectional Attention and R-net

In addition to concatenating bidirectional attention output with self-attention output, as described in
Section 3, we also tried concatenating it with gated additive attention, as shown in Figure 5(b). This
model achieves a dev F1 score of 0.570 and a dev EM score of 0.421, which is far worse than the
previous hybrid model, possibly because the self-attention layer would have difficulty learning to
utilize these two first-layer attention modules because they are very different - one is controlled by
a gate and the other is itself a concatenation of attention in two directions.

5 Conclusion and Future Work

In conclusion, we proposed a novel hybrid attention architecture that combines attention gated ad-
ditive attention, bidirectional attention and self-attention. Our single model achieves 72.1% F1 and
61.9% EM on the test set. Attention analysis shows that our model is effective in understanding
the interactions between question and passage. Future work includes better interpretation of the
function of key modules in the architecture. It might also be helpful to have the model identify the
subject, verb and object of a sentence, as suggested by the error analysis section.
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