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Abstract

We developed a machine learning agent that answers questions about a short pas-
sage of text. We implemented a variation of the Bi-Directional Attention Flow
model and were able to achieve single model performance within 2% of the origi-
nal model (dev set 75.84% F1 and 66.23% EM). We found that, while most of
the performance improvements came from adding additional RNN layers, the
question-to-context attention led to additional improvements. Analysis of the
question-to-context attention showed that it generally attended to words near the
correct answer, that appear in the question, and that are the subject of their sen-
tence.

1 Introduction

In this project, we develop a machine learning algorithm to answer questions similar to, albeit much
simpler than, those you might expect to see in an SAT Critical Reading test. Specifically, we address
the task of question answering, in which one is given a short passage and an associated question
and asked to find the answer to the question in the text. Question answering is a difficult problem
because it requires the agent to jointly consider the question and answer, both of which are expressed
in unstructured natural language. How to encode dependencies between the question and context
passage is the foremost challenge in question answering.

For many natural language modeling tasks, the state-of-the-art models are recurrent neural networks
(RNNs) [1], a class of models that take an ordered series of inputs and model the data by main-
taining a “hidden state” which is passed forwards through the series and updated as each new data
point is encountered. In theory, these models could capture dependencies between the question and
answer by encoding all relevant information about the question and answer in their hidden states
and directly answering the question from there. However, despite representing a major advance over
other methods, they still struggle to retain information in their hidden states over long distances,
precluding such trivial solutions.

In end-to-end, deep learning systems, the dependencies between questions and answers are most
commonly addressed through “attention-layers”. These layers provide direct connections between
similar parts of the question and context passage. Specifically, a standard attention layer combines
each context hidden state with a weighted average of question hidden states. In this way, they inform
each part of the context about relevant characteristics of the question, preventing the entirety of the
question and answer from needing to be encoded in a single hidden state. Attention mechanisms
principally differ by how they quantify similarity between the question and context (many of which
allow the model to learn a similarity function). In this paper, we explore the performance of various
attention layers in the context of question answering. Additionally, we explore the effects of two
non-standard attention mechanisms: self-attention and question-to-context attention.



2 Dataset and Representations

We trained and evaluated our models on the Stanford Question Answering Dataset (SQuAD), a
reading comprehension dataset consisting of questions posed by crowdworkers on a set of Wikipedia
articles [2]. For each example we will refer to the article as the “context”. The answers to all
questions appear verbatim in the context, so the task is to predict the start and end point of the
answer. The contexts, questions, and answers are generally short with median lengths of 127, 11,
and 2, respectively (Figure 1). The SQuAD data set contains over 100,000 examples, which are split
into training, development, and test sets with an approximately 80%, 10%, and 10% split.
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Figure 1: Number of words in contexts, questions, and answers in SQuUAD training set.

Each word in the context and question were represented using 100-dimensional GloVe word vectors
[3]. Rare words for which no word vector exists were all assigned the same randomly initialized
embedding. In some experiments, we added an additional ‘exact match’ feature appended to the
word vector, which was 1 if the word appears in the question and O otherwise. This was based
on our observation that there is a strong relationship between the position of exact matches and
the starting position of the answer span. As shown in Figure 2, there is a sharp spike of exact word
matches with the question just before the start of the answer span, with nearly 25% of words directly
before the answer span exactly matching a word from the question.
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Figure 2: Frequency of exact word matches relative to answer start position

3 Model Architectures

Our models consist of stacked recurrent and attention layers, with variations in which layers are
included as well as the makeup of each layer. Figure 3 shows the full sequence of model layers,
although not every model we tested included every layer. At a minimum, however, each model con-
sisted of a word embedding and RNN encoding layer to encode both the context and question. This
was followed by an attention layer that combined information from the question into the context rep-
resentations. After optional RNN and self-attention layers operating on the context representations,
the model ran a prediction layer to output start and end positions for the answer span. Each layer
and the variations implemented are described in detail below.

3.1 Embedding Layer

As described above, our embedding layer used pretrained 100-dimensional GloVe word vectors,
with optional exact-match flags. In a small departure from the baseline starter code, we used a
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Figure 3: Model architecture overview. Dashed box indicates optional layers

constant random seed to initialize the out-of-vocabulary vector, so that it would remain constant
between training and test time. For the encoding RNN after the embedding layer, we used the same
weights to encode both the question and the context. Although we tested untying the weights for the
encoding RNN, it just increased the number of model parameters without significantly improving
performance.

3.2 Attention Layers

Since its introduction on machine translation tasks by Badahanu et al. [4], attention has become a
widely used feature in neural networks for NLP. For context-to-query (C2Q) attention in our models,
the attention layer takes as input a sequence of keys (the context representations) and values (the
query representations). Each input key vector K; is then compared to the full set of value vectors
Vi...V,, and an attention vector is composed as a weighted average of the value vectors scored
most similar to the input key. For C2Q attention, this provides us with a representation of the most
relevant parts of the question for each position in the context. In the soft-attention model introduced
by Badahanu et al., we compute a similarity matrix representing how similar each key is to each
value, then use the softmax of those similarity scores to compute a weighted sum of the value
vectors to obtain the attention output a;:

Sij = F(ki,v;)

o' = softmax(S;.)
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In the context of SQuUAD, attention can be used as a mechanism to combine meanings between the
context and question, and self-attention has also been used successfully in models such as R-Net
[5] to improve the context representations independently of the question as well. In this project, we
considered context-to-question attention, self-attention, and bidirectional attention flow, as well as
several options for the similarity function F'.

In the baseline implementation, we used a simple context-to-question attention with dot-product
similarity: F'(k,v) = k”'v, which prioritizes relationships between close representation vectors. We
also tested multiplicative attention: F'(k,v) = k™ Wv used by Luong et al. [6], as well as additive
attention: F'(k,v) = xTtanh(W1k + W2v) used in the original formulation by Badahanu et al. [4].
(Unfortunately, our additive attention module used memory proportional to the product of the batch
size, context length, question length, and hidden dimension, which caused out-of-memory errors for
many of our experimental setups.) After each attention layer, the attention output is concatenated to
the corresponding value input vector and passed to the following network layer.

3.3 Bi-Directional Attention Flow

In question answering, we want more than the access to relevant question hidden states provided
through context-to-question attention—we want to know where in the context is most relevant to the



question. The question-to-context attention included in the Bi-Directional Attention Flow algorithm
[7] attempts to provide this through the following procedure:

1. A similarity matrix S between the question and context hidden states is computed as de-
scribed above.

2. The maximum similarity m between each context hidden state and any question hidden
state is computed (m; = max S;;).
J

3. A softmax is taken over these maxima, in effect providing a distribution over the similarity
of each part of the context with the question, 5 = softmax(m).

4. A sum of context hidden states weighted by the above (3 distribution is computed.

5. The attention output is obtained by element-wise multiplication of the above sum and each
context hidden state.

In this way, the attention output will tend to have positive elements at components of the context
that are highly similar to part of the question.

3.4 Prediction Layer

In our prediction layer, we used a feed-forward ReLU layer over the context representations fol-
lowed by a softmax layer to compute probability distributions for the start and end positions of
the answer span. At test-time, we found the answer span maximizing p(poSstart) X P(POSend)s
subject to the constraint that possiart < POSend < POSstart + 15. 97.6% of answer spans in
the training set fit these constraints. We also implemented a test-time prediction method that
took into account the observed distribution of answer lengths from the training set by maximiz-
ing p(posstart) X P(PoSend) X p(len = PoSend — POSstart). However, we found that this performed
worse in practice than the simple length-based cutoff, and in larger models often failed to improve
performance compared to naively taking the maximum of our start and end softmax distributions in-
dependently. In all but our baseline models, we used the length-based answer cutoff for evaluation.

3.5 Implementation Notes

Unless otherwise noted, each of our models used the following parameters: for RNN layers we used
gated recurrent units (GRUs) as introduced by Cho et al. [8]; 200 dimensions for hidden layers;
100 dimensions for word vectors; Adam optimizer with the default parameters from the starter-code
baseline model; dropout probability of 0.15, except for the models using LSTM layers where it was
set to 0.2. Our minibatch size was set to 100 examples, and all models were run for at least 15k
training iterations.

For improved training speed, we limited the maximum context length to 300, although we increased
this to 600 at test time. We observed that the RNN layers were a major performance bottleneck, so
this change nearly doubled our training speed while retaining 98.3% of our training data and resulted
in no detectable decrease of eventual test-time performance.

4 Results and Discussion

4.1 Baseline Experiments

To better understand the interplay of RNN and attention layers in the SQuAD context, we conducted
several experiments with variations on the baseline model. The results of these experiments are
shown in Table 1. The baseline model consisted of the embedding layer, followed by an RNN
and C2Q attention leading directly to the prediction layer. Because the C2Q attention used the
dot-product similarity function and our encoding RNN weights were shared between the context
and question, we knew it would likely score exact word matches very highly. And based on our
observations detailed in Figure 2, we knew this exact match should be very prominent just before
the start of the answer. However, because there were no further recurrent layers in the baseline
model, it was unable to propagate this information forward from the exact match positions to the
correct answer start positions.



Table 1: Baseline experiment results

Model DevF1 DevF1
Original Baseline (RNN before C2Q attention) 42.42 33.30
Baseline (no attention + exact match flag) 49.12 39.39
Baseline (RNN after C2Q attention) 55.71 45.36
Double Baseline (RNN before + after C2Q attention) 68.08 57.35

Triple Baseline (1 RNN before + 2 RNNs after C2Q attention) 71.49 61.24

(Note: these predictions were taken without the answer length cutoff as described in our model
architecture)

To validate this theory, we removed attention from the baseline model entirely, instead replacing
it with our exact match word flags which were the only information on the question the model re-
ceived. Astoundingly, this model — which was never given the full question sequence — managed
to outperform the original baseline model by nearly 7 F1 points. We were able to improve on the
baseline further with a less-handicapped version of the baseline in which the RNN layer was placed
after rather than before the attention layer. (In this model the attention operated directly on the input
word vectors). These results show the critical importance of including RNN layers after attention
layers in order to distribute information from attention outputs to nearby sequence positions. Finally,
we experimented with two models, termed “double baseline” and “triple baseline”, which stacked
additional RNNss after the original baseline’s C2Q attention layer. We saw a sharp increase in per-
formance in the “double baseline” model, with rapidly diminishing returns in the “triple baseline”
model, which was ultimately outperformed by our models with more advanced attention mecha-
nisms.

4.2 Main Model Performance

For our main model development, we initially tested several combinations of attention and recurrent
layers, eventually settling on a pair of models with many similarities to the BIDAF model published
by Seo et al. [7]. Our best dev-set F1 performance across all models was 76.22, and our best dev-set
EM performance was 66.23, and a selection of model results is presented in Table 2.

Table 2: Selected model performance results

Model DevF1 DevF1

Double Baseline (RNN before + after C2Q attention) 70.47 59.37
Double Baseline + Exact Match flag 72.86 62.40
Basic BiDAF (Double Baseline using BiDAF attention) 72.22 61.48
Basic BiDAF + Exact Match flag 73.28 62.69
LSTM BiDAF (Basic BiDAF using LSTM for RNN layers) 74.25 63.77
LSTM BiDAF + Exact Match flag 72.92 62.64
LSTM BiDAF + Multiplicative self-attention 75.31 65.07
LSTM BiDAF + 2 RNN Layers after BIDAF attention 75.34 65.04
LSTM BiDAF + Multiplicative self-attention (ensemble) 76.22 66.05
LSTM BiDAF + 2 RNN Layers after BIDAF attention (ensemble) 75.84 66.23
Seo et al. BiDAF (single model) 77.3 67.7

Seo et al. BiDAF (ensemble) 80.7 72.6

We initially started our development from the double-baseline model described in the previous sec-
tion, as a lightweight and high-performance model. We then substituted the dot-product context-to-
query attention layer with the more sophisticated bi-directional attention flow mechanism described
in section 3.3, which provided about 2 points in F1 performance over the double baseline. We then
switched our RNN Ilayers from GRUs to LSTMs, which yielded an additional point in F1 perfor-
mance.



On each of these models, we also tried adding our exact match flag. Although an exact match
flag was very helpful to the simpler models, on our more complex models it actually decreased
performance slightly. We hypothesize that once models reach a certain level of complexity, they
can essentially recompute the exact match locations independently, so the flag just provided an extra
signal to overfit onto.

In our final round of model improvements, we added an additional LSTM layer on top of our pre-
vious best model, and also experimented with inserting a multiplicative self-attention layer. (These
two models are equivalent except for the optional inclusion of a self-attention layer between the fi-
nal two LSTM layers). These improvements added an additional percentage point of improvement.
We then extended the training runs of these models to create a majority-vote ensemble model com-
posed of 5 checkpoints taken 500 training iterations apart. This simple ensembling approach was
able to add an additional single point of improvement, although it likely suffers from incomplete
independence between voting models. Our final model was very similar to the BIDAF model pub-
lished by Seo et al., although our model lacked a character-CNN in the embedding layer and used a
slightly simpler prediction layer. Nonetheless, we were able to come within two points of their F1
performance on a single model.

Surprisingly, the addition of self-attention layers had little impact on our model performance, and in
all of our tested models it failed to give a significant performance increase compared to equivalent
models with the self-attention removed. In theory, self-attention should help provide the model
with a better understanding of the relationships within the context passage, and in practice the R-
Net model [5] is able to achieve good SQuAD performance using self-attention. Notably, we were
unable to replicate the additive similarity function used in R-Net with full-scale models due to out-
of-memory errors. However, our observations may indicate that understanding the context-query
relationship is a more critical function for SQuUAD models than using self-attention to gain a more
sophisticated understanding of the context passage.

4.3 Error Analysis

Where does our model perform best? Characteristics of the true answers had significant effects on
model performance. First, we found that our model performs significantly worse when the answer
contains an out-of-vocabulary word (0.51 EM) than when there are no out-of-vocabulary words
(0.60 EM) (p = 2.17e-13 by chi-square test). Furthermore, model performance drastically fell with
increasing length of the true answer with EM scores under 0.5 for answers longer than just 4 words.

Characteristics of the question also impacted model performance. We analyzed the dependence of
performance on the presence of the words ‘what’, ‘where’, ‘when’, ‘why’, ‘how’, ‘which’, ‘who’,
‘whose’, or ‘whom’ in the question. Interestingly, we found that questions beginning with ‘what’
had lower than average performance (53.3 EM), despite being the most common type of question
in the training set. This likely corresponds to ambiguity in the type of answer that is desired in a
what’ question making them fundamentally harder questions, i.e. in the question “what year did
X happen?”, we need to understand that the presence of the word ‘year’ indicates that we desire a
date as an answer. Additionally, we noticed that about 1% of the questions contained none of these
typical question words. These mostly consisted of questions with misspellings or questions that
were actually phrased as a sentence fragment such as “ableine was retired and the new platform is
called”. Our model did the worst on these atypical questions (36% EM).

4.4 Bi-Directional Attention Flow

After observing that Bi-Directional Attention Flow increased performance, we sought to understand
what it was learning. Specifically, we performed analyses to uncover what the question-to-context
attention was attending to. First, we asked how many positions in the context were on average being
taken to account: is most of the weight on a few words or close to uniform? We found that on
average 35% of the attention score is based on a single context position and the top 10 positions
account for over 78% of the distribution.

Seeing that most of the attention was placed on a few words, we sought to determine properties
of the highly attended to positions. We found that we attended to components of the context close
to the answer, as quantified by the average attention score as a function of position relative to the



answer. Second, as is not surprising, it attended to components of the context that are exact matches
to words in the question. The word with the highest attention score appeared in the question close
to 90% of the time, much higher than the 15% average (Figure 4).

To test whether the attention was more dependent on the word at each position or their context, we
analyzed the attention distributions at out-of-vocabulary words. Since in our representations out-
of-vocabulary words are all assigned the same word vector, there is no way that out-of-vocabulary
words appearing in the question could be attended to over out-of-vocabulary words not appearing
in the question based solely on their word vectors. We found that out-of-vocabulary words that
were assigned maximum attention weight were 4.72-fold more likely to appear in the question than
other out-of-vocabulary words (p = 4.915e-4 by two-sided chi-squared test). However, this still
appears to be less than optimal; of the out-of-vocabulary words that were assigned maximum atten-
tion weight only half appeared in the question. For example, when given the question “what have
peridinin-type chloroplasts lost ?”°, the highest attention weight is placed on the word ‘dinophyte’ in
the context phrase “the most common dinophyte chloroplast”, despite “peridinin-type chloroplast”
appearing several times in the context. It appears that the model was attempting to attend to an
out-of-vocabulary word followed by ‘chloroplast’, but was unable to attend to the correct out-of-
vocabulary word.
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Figure 4: Analysis of question-to-context (Q2C) attention. (Left) The fraction of the total Q2C
attention (y-axis) accounted for by the top k attended to positions (x-axis). (Center) The average
Q2C attention value as a function of position relative to the true answer. (Right) The frequency of
words appearing in the question as a function of position relative to the word receiving maximum
Q2C attention.

So we know that exact matches are important, but there are a lot of exact matches and the model
generally only attends to a few—how does the model choose? We observed that the model tends
to attend to words in the beginning of a sentence (Figure 5). Furthermore, we found that this trend
cannot be explained by the positioning of answers in sentences, which show no skew, nor positioning
of exact matches in sentences, which are similarly skewed towards the beginning of sentences, but
significantly more weakly. To quantify this observation, we considered whether maximum attention
words appear before or after the verb in sentences containing a form of ‘to be’, i.e. ‘is’, ‘are’, etc..
We found that maximum attention words are 4.40-fold more likely to appear before than after the
verb (p = 1.32e-70 by chi-squared test), whereas exact matches (excluding the 100 most common
words) were only 1.13-fold more likely to appear before than after the verb. This suggests that the
model has learned to recognize rearrangements of questions into associated sentences that could
answer them, i.e. the sentence “What is X?” is likely to be answered by a sentence of the form “X
is Y.

5 Conclusion and Future Work

We found that attention, along with the arrangement of RNN layers surrounding them, was critical
to our model’s performance. Simply adding an RNN layer after the attention layer in the baseline
model accounted for most of our performance gains. This is likely due to the fact that the position of
the correct answer is indicated by words near the answer, but not in it (Figure 2). Our top performing
models made use of question-to-context attention in addition to the standard context-to-question
attention. We found that the question-to-context attention improved performance by attending to
relatively few parts of the context that are generally close to the true answer.
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Figure 5: Where in a sentence does question-to-context (Q2C) attention attend to? (Left) The relative
position of maximum attention words in their sentence. (Center) The relative position of answers in
their sentence. (Right) The relative position of exact matches in their sentence.

Moving forward, the biggest issue with our models seem to be performance on questions with long
answers and questions with abnormal forms. We found that even our best models were ineffective
on questions whose answer was over 4 words long (EM < 50%). We found that our model had
trouble answering questions that were unusually worded (EM < 40%).
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