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Abstract

We construct a generative adversarial network (GAN) architecture that takes as
input a text caption and outputs a generated image described by the caption. We use
the Oxford-102 Flowers Dataset with captions and images to train our model. As a
baseline, we encoded captions using skipthought vectors and created images using
a conditional deep convolutional GAN (DCGAN) with conditional loss sensitivity
(CLS). From there, we fully connected the text model using a bi-directional LSTM
trainable from the loss from the GAN. Furthermore, we implemented various
tweaks for our GAN architecture, drawing from the current state-of-the-art in
training techniques for GANs. Additionally, we implement and explore the use
of the novel Boundary Equilibrium GAN (BEGAN) model, which balances the
generator and discriminator loss to vastly improve visual quality, as a conditional
model to generate images from caption embeddings.

Github repo: https://github.com/samirsen/image-generator
CS224N Mentor: Richard Socher

1 Introduction

Much work has been done to examine the syntax and semantics of textual data. One way to measure
textual understanding might be to observe transfer of textual learning into the visual domain.
Specifically, automatic image generation from captions is a challenging current area of research,
at the forefront of efforts in both NLP and vision work. Beyond demonstrating an impressive
understanding of both natural language and vision for theoretical interest, high performance on this
task would have a number of practical applications. One example would be in image search: a user
can type a complicated caption phrase, a model for this task can generate an image matching this
caption, and a reverse image search based on the content of the generated image can be used to find
relevant existing results. On a subtler note, progress in this domain may aid in bridging the gap
between tasks which can be automated, and those which are open to interpretation.

In this joint project for CS224N and CS230, we build generative adversarial network (GAN) models
for generating images of flowers using captions from the Oxford flowers caption dataset. Specifically,
we focus our efforts on improving model performance and overall quality of generated flowers by
experimenting with various GAN architectures and language models. As a baseline, we attempt the
image generation task by passing pretrained 4800-dimensional ’skipthoughts’ sentence embeddings,
concatenated with random gaussian noise, to a vanilla 4-layer generator and discriminator network.
We find that the images produced by more complex architectures, including deep convolutional GANs
and boundary equilibrium GANS, resulted in a higher overall image quality. Furthermore, we find
that an end-to-end model inclusive of training caption embedding through a bi-directional LSTM
before being passed to the GAN architecture resulted in images that were both higher quality and
resulted in trained caption embeddings that corresponded well with the categories of flowers in the
dataset.



2 Previous Work

Previous work has been done on this task. In the space of multimodal representations, Srivastava &
Salakhutdinov (2012) used a deep Boltzmann machine to jointly model images and text data. [16] For
image synthesis, before GANSs, variational autoencoders and autoregressive models (e.g. PixeIRNNs)
generated promising results. Mansimov et al. 2016 built a model to generate images from text using
attention to align text features with a canvas. [17] Most recent work on this task has generally used
some variety of GAN. GANs are promising for this task because they can achieve generation of
sharper images and they have been naturally extended to conditional GANSs, though their training is
unstable and reliable quantitative evaluation is difficult. Reed et al. (2016) applied GANSs to image
synthesis conditioned on captions, using an architecture that we aimed to emulate and improve upon
for our baseline model. [2] More recent work has built off of this architecture, usually by building
more sophisticated and multi-layered GAN models. Some examples include StackGAN [7], which
uses a second GAN to refine and increase the resolution of images, and AttnGAN [8], which uses
attentional generative adversarial networks to do multi-stage refinement of images.

3 Approach

At a high-level, our approach involves taking textual vector representations of captions and then
using a conditional GAN to generate output conditioned on representations. This general approach,
with modifications, is also employed by most recent papers on this task. Our baseline model took
inspiration from the architectures proposed by Reed et al.(2016) and Neekhara (2016). We built on
top of this by borrowing other ideas from very recent research on deep convolutional and balanced
equilibrium GANs implementing these models from scratch in pyTorch. In contrast to recent efforts,
we also implement our own LSTM architecture for learning caption representations that correspond
with the various categories of flowers in the Oxford Flowers dataset.

Figure 1: Highest quality images were attained using BEGAN model with Bi-LSTM trained embed-
dings
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3.1.1 Caption Embeddings and LSTM

To begin, we vectorized the text captions that using the Skip-Thought model, which is a skip-gram-
based model combined with a gated recurrent unit that encodes a sentence to predict the sentences



around it, implemented in Kiros et al 2015 [1]. Thus, sentences with similar semantic and syntactic
have similar vector representations. Skip-thoughts derives its name from similar training methodology
to the popular skip-grams language model. As opposed to using context and center words, skip-
thoughts is able to learn sentence representation from predicting center sentences from context
sentences. This model has been trained on a corpus of 11,803 books. Using this pretrained model, we
vectorize each caption into a 4800-feature vector as a baseline.

Using the pretrained skip-thought vectors, we seemed bottlenecked in our ability to produce very
high quality flower images as caption embeddings were not specific to the task of generating flowers.
We also believe that these sentence embeddings may not capture representational similarity very well
as they are trained on a relatively small dataset in comparison to GloVe word embeddings. Some
examples of the baseline images produced are shown above.

Figure 2: Images generated by model with skip-thoughts embeddings are noisy

These images were quite noisy and we were curious to see if trained custom embeddings geared to
the task of flower generation would result in better association with the flower we expect to generate.
In other words, we wanted to be able to learn embedding weights from an LSTM language model
such that encoded embeddings would be distinguishable with respect to the category of flower (i.e.
red flowers, purple flowers, flowers with petals, etc.) . We started experimentation creating custom
sentence embeddings from GloVe vectors trained on 6 billion words instead of the skipthought
sentence vectors trained on a much smaller dataset.

Specifically, we first tried concatenating the sequence GloVe word vectors to form an embedding for
each caption. Because GloVe vectors are 300 dimensional, this meant padding each sentence to a max
length of 16. We found that these embeddings were not as optimal as expected fairing worse or equal
to the baseline model. We suspect that this is because the skipthoughts sentence embeddings are cap-
ture semantic similarity in captions better than blind concatenation of independent GloVe embeddings.

Next we tried using the GloVe word embeddings to input the sequence of words from a batch of
captions to an LSTM layer. In particular, we model the task of learning caption representations by
optimizing the weights according the GAN generator loss in a single-layer Bi-directional LSTM.
Consider the input sequence, x, forward recurrent weights W,~, backward recurrent weights W,
and embedding weights W.. Then to encode a caption,

iy = o(Waims + Whihs 1 + Weicr—1 + by)
fi =0(Wyszi + Whshi—1 + Wepcr—1 + by)
¢t = fre—1 + igtanh(Woey + Whiehe—1 + be)
0y = 0(Weomt + Whohis 1 + Weocs—1 + b,)
h; = ostanh(cy)
Then, we concatenate the right and left hidden states calculated to get h(*) = [h;”; hi~] where each
hidden state is 2400-dimensional so the output from the forward pass through the Bi-directional

LSTM is 4800-dimensional. We train the network weights using Adam optimizer using the loss
computed from the image generation stage of the GAN.
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3.1.2 Input for Generator

Prior to inputting our embedded text into the generator, we pass the embedded vectors into a fully-
connected layer to reduce the dimensions to 256-features followed by a leaky ReLLU activation
function. We then sample a 100-feature noise vector z from the normal distribution with mean 0
and variance 1, and concatenate the embedded text vector and the noise vector, passing this resulting
vector into the generator.

3.1.3 Generator

The DCGAN implementation contains six layers of the convolution transpose functions, decreasing
the number of channels while increasing the dimensions of the image. After each layer, we apply
a leaky ReLU function, except for the last layer, in which we apply a tanh function. We originally
used a ReLU function, but we updated it to a leaky ReL.U to improve our generator performance over
time, as the discriminator was winning against the generator. The result is a 128x128x3 image that is
outputted by the generator.

The Conditional BEGAN model, we added an additional hidden layer before we pass it into the
generator part. An important part of the BEGAN model is that the generator has the same architecture
as the decoder of the discriminator [3]. With this in mind, we have defined an upsample block with
two convolution layers with ELU activations and a nearest neighbors upsample. The generator and
decoder of the discriminator has 4 upsample blocks followed by two convolution layers with ELU
and a final convolution layer with tanh, giving us a 128 x 128 x 3 image.

3.1.4 Discriminator

The DCGAN discriminator is a 4 layer convolution network that first takes an 128x128x3 image,
decreasing the size of the image as we go deeper and increasing the number of channels. After each
layer, we apply a leaky ReLLU activation function. We also pass the given text embedding through a
fully connected layer and concatenate the output of the convolution layers with the embedded text
vector. We pass this concatenated vector through two more fully connected layers, and pass the result
into a sigmoid function. To improve the GAN, we decided to add smooth-labelling, making the
training output 0.9 instead of 1 when the right image and caption are added [2]

The BEGAN model has a convolution block defined as two convolutions with ELU followed by a
convolution and an average pooling. We pass our input through four of these convolution blocks
and several other convolution layers with ELU to created an image encoding. We then use a fully
connected layer to make this a hidden embedding, which we concatenate with the text encoding
(hence conditional). We have another fully connected layer to make a hidden layer and pass it into
the decoder. This decoder has the same structure as the generator, creating a 128 x 128 x 3 image
reconstruction of the original image.



3.2 Objective
3.21 DCGAN

The discriminator’s goal is to output a 1 (0.9 with label smoothing) when the input is a real image
and the right caption. Otherwise, when there is a wrong image to match the caption or there is a fake
image with the caption, the discriminator wants to output 0. With the following sigmoid outputs
from the discriminator, y,. < D(r,z’) {Real image, right caption}, y,, +— D(w,z’) {wrong image,
right caption}, and yy <— D(f, ') {Fake image, right caption}. We apply binary cross entropy to the
following loss function for our discriminator:

Lp + log(yr) +log(l — yu) + log(1 — yy)

Thus, our discriminator aims to maximize the (real image, right caption) pairing while minimizing
(wrong image, right caption) and (fake image, right caption) pairs. Our generator, on the other hand,
has the loss function:

L <+ log(yy)

Thus, the generator wants to maximize the (fake image, right caption) output from the discriminator.
Our training procedure is summarized in the alogrithm below.

Algorithm 1: Training of CLS DCGAN

Input: real images r, wrong images w, matching captions ¢, batch size S, generator GG, discriminator D, text
encoder ¢, learning rate o

fori=1,...,5do

x < ¢(t) {Encode G caption}

z ~ N(0,1) {Sample random noise}

f + G(z, z) {Generate image}

x’ < ¢(t) {Encode D caption}

yr < D(r,2’) {Real image, D caption}

yw + D(w,z") {Wrong image, D caption}

ys < D(f,x") {Fake image, D caption}

Eg) + log(yr) + log(1 — yw) + log(1 — yy) {Discriminator loss}

Eg) <+ log(yys) {Generator loss}

JIp + % Zle —,C%) {Discriminator cost}
Jo + 5 Zle —E(C? {Generator cost}
D+ D-— a% {Update discriminator}
G+ G- a% {Update generator}

3.2.2 BEGAN

The goal of the BEGAN model is to balance the loss of the generator and discriminator [3]. With a
loss function as the L.; norm of the matrix, we have the loss function:

Lp « L(yr,7) — kL(ys, f)

Our generator has the loss function:
EG < ‘C(yf 5 f )

In this model, the discriminator’s goal is to recreate the real input image after encoding the image
as accurately, while recreating the fake image as poorly as possible. By keeping a balance of

= %%:%]] with the diversity ratio . A low v make the discriminator focus on the recreating
real images, making the generator focus on producing more realistic images. While a high v
makes the discriminator focus on discriminating, making the generator produce more diverse
images. The previous equation is equivalent to YE[L(y,, )] — E[L(yy¢, f)] = 0. We choose to have

k< k+ AOE[L(yr,7)] — E[L(yy, f)]), with X as the learning rate that adapts k over time. By



using our k value in the loss Lp < L(y,,7) — kL(yy¢, f), we balance the losses over time.

Algorithm 2: Training of Conditional BEGAN

Input: real images r, matching captions ¢, batch size S, generator G, discriminator D, text encoder ¢, learning
rate a, loss balancing term k, diversity ratio -y, proportional gain A (learning rate for k)

fori=1,...,5Sdo

T ¢(t) {Encode G caption}

(0,1) {Sample random noise}

f + G(z, z) {Generate image}

x’ < ¢(t) {Encode D caption}

yr < D(r,2") {D generated real image}

ys + D(f,x") {D generated fake image}

LD (yr,r) = ||yr — r||1,1 {Real image loss}
L L9ws, ) = llys — fll11 {Fake image loss}

L(yr,T) =%
1
5

ZS LD (y,, ) {Average real image loss}
L(ys, f) = ZZ L LD (yg, f) {Average fake image loss}
JIp « L(yr,r) — kL(yy, f) {Discriminator cost}

Ja + L(y#, f) {Generator cost}

D+ D- aag D {Update discriminator}

G+ G- aa‘jc {Update generator}

k+k+ )\('yﬁ(yr, r) — L(yy, f)) {Update k value}

4 Dataset

We used the Oxford-102 Flowers dataset collected from an online repository for this experiment.
This data set has over 8,000 images of flowers along with nearly 10 captions for each image. On the
current model, we trained and tested our model on a small subset of 128 images of this data set. We
also used 300-dimensional GloVe vectors as frozen word embeddings for our bidirectional LSTM
model, which were trained on 6 billion word tokens from Wikipedia 2014 + Gigaword 5. [13]

S Experiments

We first ran our baseline model, which was a simple conditional GAN with 4 convolutional layers
for both the generator and discriminator. We used CLS (conditional loss sensitivity), as described
in Reed et al. 2016, which resulted in a modified loss function for the discriminator. We used
the skipthoughts model to encode sentence vectors into a 4800-dimensional vector representation.
We then projected this representation before concatenating it with a 100-dimensional Gaussian
noise vector, as described above. We used a learning rate of 0.0001, a batch size of 128, and data
augmentation through random flips. The model took a few hours to train, about 30 seconds per epoch.
We show the loss curve for this training and validation in our supplementary files.

Baseline Inception Scores of Generated Images
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Figure 3: We report increasing inception scores over epochs, indicating generation of images that are
closer to real.
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5.1 GAN Architecture

We noticed that many of the resulting images exhibited a visible checkerboard artifact, which
motivated us to look into this issue. We show an example of an image exhibiting this pattern in a
figure. We found this checkerboard artifact in images produced by other models, including that by
Reed et al., and found that the checkerboard pattern was a common issue with GANs. We found that
one possible solution was using upsampling and convolution for our "deconvolutional" layers.

We modified our GAN architecture to use this paradigm, added more convolutional layers to the
generator and discriminator. After we discovered the upsampling tweak, we also found and imple-
mented a number of "GAN hacks", many of which we initially read about in Soumith Chintala’s
popular Github resource bearing the same name. [12] Some of the hacks that we implemented
include one-side label smoothing, LeakyReLU with a leak of 0.2, using SGD instead of Adam for
the discriminator and Adam for the generator, using Gaussian noise for the generator, using tanh as
the output activation function for the generator, using BatchNorm, learning rate decay, avoiding the
use of ReLU and MaxPool because they cause sparse gradients, and using ELU instead of ReLU.
Because of our limited timeline and the time required to train our more complicated models (our final
models took days to train), we were not able to individually test the effectiveness of each of these
tweaks for our task, although we did learn that using SGD for the discriminator did not seem to work
well.

The resulting model containing these tweaks as well as upsampling produced images that did not
have the checkerboard problem, but the loss curve for training seemed to indicate some divergence
of the generator after a number of epochs. Sampled images sometimes had backgrounds and color
patterns that clearly revealed that they were synthesized. It is difficult to tell what the cause of the
instability was, owing to the general instability of GANs and the number of small tweaks we made
to the model architecture. The train and validation loss curves for this model are provided in the
supplementary files.

After building our upsampling model, we moved on to the BEGAN model because we saw that it was
the state-of-the-art in non-conditional GANs and it kept an intuitively appealing balance between the
generator and the discriminator (something our other models struggled with). Our goal was to extend
the model to be conditional, analogous to the way GANS were quickly extended to Conditional GANS.
[5] We implemented this model in PyTorch and applied it to our text-to-image synthesis tasks. We
had to reduce our batch size from 128 to 64, as the model operations would not otherwise fit on GPU
memory. After about a day and a half of training, this model gave us better results, with more stable
loss and training curves shown in supplementary files. For this model, we evaluate quantitatively
using inception scores, which are a measure of image interpretability (from the perspective of an
Inception v3 model) introduced by Salimans et al. 2016. [14] Our results are shown in a figure, but
we caution against reading too much into inception scores, as they have been shown to be unreliable
in that models can maximize inception scores by producing adversarial examples for the Inception
model. [15]

5.2 Text Model Architecture

In parallel, we worked on improving our text caption encoding model from our skipthoughts baseline.
The skipthoughts model was not trained for the task and dataset, so its encodings did not capture
important insights related to the domain. For example, a learned sentence representation would
put much more emphasis on the word "red" in producing a caption than the word "flower", which
provides little additional information in a set of captions about flowers.

We used GloVe vectors to implement two models: a bag of words model that averages the word
vectors in a caption and uses this as a sentence representation, and a 1-layer bidirectional LSTM
model. Both of these models use frozen embedding weights, since we suspected our caption dataset
was not large enough to successfully finetune these weights without aberrations. As we expected,
the LSTM model performed much better, as it was able to capture positional information and used
learned weights. Sample images from the LSTM model are shown in figures.

6 Conclusion and Future Work

There is much room to improve the model architecture. Because of the rapid monthly influx of GAN
papers, new tweaks are being discovered regularly to improve the stability and output quality of
GAN:Ss. Even a regular DCGAN gets a significant boost in the quality its images by applying simple
"GAN hacks", such as one-sided label smoothing, feature matching, decaying learning rate, using
SGD for the discriminator, etc.
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Figure 4: tSNE dimensionality reduction before and after training

In our work, we implemented most of these tweaks, but did not have time to experiment with others.
Moreover, we were not able to experiment with each tweak individually and see the results for our
task. Since experimenting with GANs remains a very experimental process, the time-consuming
nature of training (especially for the BEGAN model, which took days to train on a high-end GPU)
prevented us from tuning these tweaks, and we were left to guess which tweaks would improve
the performance of our model and which would not. In the future, we would make these decisions
empirically, perhaps by using multiple GPUs in parallel to speed things up, introducing the possibility
of more rigorous hyperparameter tuning.

Many variations of GANs now exist as well, even for the narrow task of text-to-image synthesis,
including StackGANs and AttnGAN. Though we were able to explore and extend BEGANS for our
task, (and also played around with WGANS, although results were now shown in this paper) if we
had more time we would explore other recently developed architectures to see how they perform on
this task.

Given more time, we would also devote more time to finding better text representations and better
visualizing the transfer from the textual domain to visual. We suspect that an attentional model would
achieve both good performance and interpretability, so we would go in this direction first.
Eventually, we would want to extend our model to train on different datasets, such as MS COCO or
even ImageNet, but this may not be feasible in the near future, as this remains a significant obstacle
even for seasoned researchers working on this task, due to the instability of GAN training.

7 CS224N/230 Work Split

We built the baseline model from PyTorch (after learning how to use PyTorch) for both CS224N and
230. This includes code to load data, build our first generator and discriminator models, apply the
skipthoughts model to captions, run training, and manage experiments. For CS224N specifically we
built on top of this work by replacing the skipthoughts model (which was not trained for this task).
We implemented both a bag of words model and an LSTM model that was trained with the rest of
the model. We ran experiments and visualizations with these models, building different sentence
representations by using different hidden layer sizes, summing/averaging hidden states, performing
t-SNE dimensionality reduction, etc. We also implemented a number of "GAN hacks" or changes
to the model architecture/training that helped with generating higher-quality images (an example is
one-sided label smoothing). Our goal with these hacks was to apply learnings from state-of-the-art
GAN models to this task. For CS230, we built new model architectures to replace our generator
and discriminator models, including a deeper DCGAN with upsampling, WGAN (results not shown
in this paper, code in repository), and conditional BEGAN. Our goal with these models was to
significantly improve the quality of our samples, since these are some of the most performant GAN
architectures developed so far outside of the text-to-image context. These later models have never
been implemented for this task before, so this was a major learning experience.
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