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Abstract

This project implements a deep neural system for question-answering on the Stan-
ford Question Answering Dataset (SQuAD). In particular, we re-implement the
Dynamic Coattention Network (DCN) by Xiong et. al.[1] that determines the
answer span using an iterative reasoning scheme. The DCN uses a two-level at-
tention network to generate coded representations of the passage and the question,
and uses a dynamic pointing decoder to iteratively determine the answer. The iter-
ative nature of the DCN was observed to make the model robust to local maxima.
Our implementation achieved an F1 score of 71.36% and an EM score of 61.418%
on the test set for SQuAD.

1 Introduction

Machine Comprehension remains an interesting challenge in the domain of Natural Language Pro-
cessing, with ground-breaking models continuously redefining the potential of neural architectures.
There have been several significant breakthroughs in the realm of question-answering, with recent
models surpassing human performance on the Stanford Question Answering Dataset (SQuAD). The
SQuAD, a dataset consisting of 10000+ questions on a set of Wikipedia articles, was first released
in 2016. The original SQuAD model[2] implemented a logistic regression model, achieving an F1
score of 51.0% against a human performance of 86.6%.

In this project, we explore different neural architectures for a question-answering system. In par-
ticular, we re-implement the following: (1) Basic Model with Simple Attention (baseline) (2) Basic
Model with Bidirectional Attention Flow (3) Dynamic Coattention Network. We also take efforts to
study the properties of the dataset and extensively analyze the architecture to identify its strengths,
weaknesses and potential areas of improvement. This report is organized into the following sections:
(1) Related Work (2) Model Architecture (3) Experiments Discussion (4) Conclusion.

2 Related Work

Attention mechanisms have been found to contribute significantly to the machine comprehension
task, answering a question about a given context paragraph. There are various implementations of
attention in different state of the art models for the SQuAD question answering system.

The BiDAF (Bi-Directional Attention Flow) model [3] introduced a hierarchical architecture for
obtaining a question aware context representation. This is based on the idea that the attention must
flow in both directions viz., from the question to the context and from the context to the question. It
included character level, word level and contextual embeddings along with bi-directional attention
flow. This avoids early summarization and provides a question aware context representation.

Another model that was successful in the machine comprehension task was the R-NET model[4].
Here, the question aware context representations are obtained by first building representations of
the questions and context separately, using a gated matching layer to match the question and the



context and then implementing a self matching attention mechanism. The self matching attention
logic matches the context against itself and thus refines the context representation with information
from the entire context. The gated attention based recurrent network allocates different levels of
importance to different parts of the context depending on their relevance to the question.

The Dynamic Coattention Network (DCN) model[1] is also a successful model for the question
answering task. It consists of an encoder module, a coattention unit and a dynamic pointer decoder.
This differs from the BIDAF mechanism in that it involves two levels of attention computation. The
first level attention output is obtained for each word in the question and for each word in the context.
In the second level, the attention is computed over the attention outputs from the first level. The
dynamic pointer decoder makes use of the highway maxout network to compute start index and
end index probabilities. An iterative procedure is followed to improve predictions by using previous
predictions. This method thus helps to recover from local maxima corresponding to incorrect answer
indices.

3 Model Architecture

In this section, we provide an overview of the incremental models we have implemented and finally
describe the architecture of the modified Dynamic Coattention Network that reimplements [1] and
couples it with the representative power of the modeling layer featured in [3].

We used the default model provided as part of the Stanford Course CS224N as our baseline
model and explored several schemes like bi-directional attention flow, co-attention encoding and
iterative reasoning, which result in a significant boost in performance, as we will show in Sec-
tion 4. For all of the architectures described below, we assume that for each SQuAD exam-
ple (context, question, answer), the context is represented by a sequence of d-dimensional word
embeddings x1, To, ...,z € R? and the question by a sequence of d-dimensional embeddings
Y1,Y2,-- YN € Rd'

3.1 Baseline Model
The baseline model provided had three major components:

1. A bi-directional GRU encoder for encoding the context and question embeddings to ob-
tain the corresponding context and question hidden states, ci,cs,...,cy; € R2?" and

q1,92,..,9N € R2h-

2. An attention layer that computes the attention output a; for each context hidden state c; as
a sum of the question hidden states g; weighted by the corresponding attention distribution.
We then create a blended representation b; for each context by concatenating each ¢; with
its corresponding attention output a;.

3. An output layer that uses a fully-connected ReLU layer to downproject the blended rep-
resentation, followed by two linear downprojecting layers: one used to determine the start
position and the other used to determine the end position of the answer span.

3.2 Improvement 1: Bi-Directional Attention Layer

We substituted the simple dot product attention layer in the baseline model with an enhanced bi-
directional attention flow model as suggested in [3]. Leveraging Question-to-Context (Q2C) atten-
tion in addition to the Context-to-Question (C2Q) attention, with no changes to the modeling layer,
yielded a 7% boost in F1 score over the baseline model.

3.3 Improvement 2: Co-attention with LSTM Modeling Layer

We implemented a custom model that uses a co-attention layer[1] in place of the basic dot product
attention layer in the baseline model, coupled with the modeling layer used in [3]. We expected
a significant increase in performance as this would allow us to capture the interaction among the
context words conditioned on the query, rather than a simple word embedding encoding as GloVe.
The custom model gained a 22% increase in F1 score over the baseline model.



3.4 Improvement 3: Dynamic Coattention Network with Modeling Layer

The Dynamic Coattention Network [1] has three components: (1) an encoder for the context and
the question (2) a coattention layer that attends to both context and question simultaneously, and
generates a fused representation of the attention contexts (3) a dynamic pointing decoder that itera-
tively finds the location of the start and end positions of the answer spans. An overall view of the
architecture is presented in Figure 1.

Encoded Context *Coattention Context

R

Figure 1: Model Architecture: Dynamic Coattention Network

Encoder Each d-dimensional context vectors a; and question vector y; are encoded using an LSTM
encoder to obtain context encoding ¢; and query encoding g:. Also, we add the sentinel vectors cg
and gy to the context and question matrices C € RM*1%d and Q@ € RN*+1X4. The question

matrix Q/ is further processed using a tanh non-linearity to obtain Q € RN*1X4_ This allows for
differences in the context and question space.

Coattention Layer We first create the affinity matrix L = CQT e RMFTDX(N+1)
and use it to generate attention weights Ag = softmax(L) € RM+1)X(N+1) apd
Ap = softmaz(LT) € RWHDx(M+1)  We compute the attention summary C and

fused summaries AL Q and AL, C? to obtain C'P as follows:
Cce = AgC c RN+1)xd

CD _ Ag[Q,CQ] = R(M+1)><2d

Xiong et. al. [1] argue that AL C® can be thought of as a mapping of the question encoding into
the document space. We finally obtain the coattention encoding as given below:

U’ = BiLSTM([D;CP))



Modeling Layer We introduced an additional
BiLSTM modeling layer to better capture inter-
action between the fused context-question en-
coding obtained from the coattention layer to
obtain U’ € R(M+1)x4d  This encoded rep-

resentation is then downprojected using a non-

linear layer to obtain the final encoding U’ € Uls..)
RM+1)x2d " which forms the input to the Dy- s,
namic Pointing Decoder. The introduction of

the modeling layer resulted in a considerable

boost to the F1 score.

Dynamic Pointing Decoder The architecture
of the dynamic pointing decoder is shown in
Figure 2. The power of DCNs lies in their
ability to iteratively determine answer spans so
as to recover from local maxima. Initial start
and end positions are determined using a non-
linearity followed by a downprojecting linear
layer as in BiDAF [3]. At each iteration, new
start and end locations are estimated by exploit-
ing a multi-layer neural architecture coupled
with a LSTM decoder.

Figure 2: Dynamic Pointing Decoder Unit

Subsequent answer span locations s; and e; are found as follows:

s; = argmax(ay, ..., apy)
t

€; = argma’x(ﬁla ceey IBM)
t
We show the computation for o below. 3 is similarly calculated using H M N, q4.
oy = HMNstaTt ('U,t, hiv Us; 1, u’ei—l)

HM Natart (ut, hiy s, , Ue,_,) = maz(Wr[my;m?]) + b3)
r =max(Wplhi;ts,_,;Ue,_,])
my = mazx(Wi[ug;7]) + b')
mi = max(Wa[m}]) + b')

4 Experiments & Discussion

4.1 Hyperparameter Tuning
4.1.1 Tuning to the dataset

An exploratory analysis on the SQuAD reveals that it contains questions that require complex rea-
soning techniques to predict the correct answer. The histograms depicting the number of words in
the question, the context and the answer within the train set are shown in Figure 3 and Figure 4. It
can be seen that the majority of the questions and the contexts are much shorter than their maximum
lengths. Also most answers are short (more than 90%) and are less than 10 words long. Hence, we
fixed the maximum context length to be 400 and the maximum question length to be 30.

4.1.2 Handling Overfitting

We observed that the model obtained high F1 scores ( 89%) on the training set, while it performed
relatively poor on the dev set. Hence, we tuned the dropout to 0.25 and obtained a 1% increase
in the F1 score. We also experimented with different learning rates and identified that a learning
rate of 0.001 achieves optimal performance. We use 100-dimensional GloVe embeddings, as longer
embeddings did not result in a significant improvement in performance.



Train Data Analysis: Question Length Train Data Analysis: Context Length
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Figure 3: Histograms of the question length and the context length in the train set

Train Data Analysis: Answer Length
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Figure 4: (a) Histogram of answer length in the train set (b) Answer length vs Average F1 score

4.2 Error Analysis

On analyzing a few examples from the dev set, we observed a few common error patterns that repeat
themselves. We present the most common ones below.

4.2.1 Answers that require picking from a list of values

Consider the following example.

Context: southern california is home to many major business districts . central business districts (
cbd ) include downtown los angeles , downtown san diego , downtown san bernardino , downtown
bakersfield , south coast metro and downtown riverside .

Question: what is the only district in the cbd to not have ” downtown ” in it ’s name ?
True Answer: south coast metro
Predicted Answer: central business districts

Answers like these requires parsing a list of values and choosing the right one. This is a complex
task, not modeled by our current system. We identify this as one of our future tasks.

4.2.2 Answer Length

Figure 4(b) shows the performance of the model for different answer lengths. It is seen that the
model performs best for questions that have an answer length in the range of 1 to 5 words. The



”When”, ”Who”, "What” and "Where” type of questions had the average answer length to be small.
The questions with answer lengths in the range of 11 to 25 words had similar average F1 score.

4.2.3 Ambiguous/Incorrect Answer Boundaries

Consider the following example:

Context:in many parts of the united states , after the 1954 decision in the landmark court case
brown v. board of education of topeka that demanded united states schools desegregate ” with all
deliberate speed ” , local families organized a wave of private ” christian academies ” . in much of
the u.s. south , many white students migrated to the academies , while public schools became in turn
more heavily concentrated with african-american students ( see list of private schools in mississippi
) . the academic content of the academies was usually college preparatory . since the 1970s , many
of these ” segregation academies ~ have shut down , although some continue to operate . [ citation
needed ]

Question:in what part of the united states did many students migrate to christian academies
during the desegregation period ?

True Answer: south

Predicted Answer: u.s. south

There have been several observed instances where there can be multiple correct answer spans. Also,
the reading comprehension task in itself is arguably very subjective. It is mainly due to this inherent
ambiguity that evaluation on the 3-answer dev-set provided by SQuAD yields a better F1 and EM
score than when evaluated against a single gold standard.

4.2.4 Answers involving conjunctions

Consider the passage in Figure 6. The true answer and predicted answer are as follows:
True: flammable cabin and space suit materials
Predicted: space suit

When the answer involves conjunctions like and, the model mis-predicts the answer span to exclude
one or more of the expressions in the answer.

4.3 Visualization

In an effort to better understand and visualize model performance, we used various tools and tech-
niques to visually capture attention mechanisms and model performance, which we present here.
Visualizations pertain to our implementation of the Dynamic Coattention Model.

4.3.1 Question-to-Context Attention

In Figure 5, we observe that the question word *ad’ attends to the tokens *30-second’ and ’adver-
tisement’ the most. From the visualization, it is evident that the model learns to attend to words that
have most correlation with themselves.

Context (Attended words are highlighted)

n "

quickbooks sponsored a " small business big game " contest , in which death wish
coffee had a 30-second commercial aired free of charge courtesy of quickbooks .
death wish coffee beat out nine other contenders from across the united states
for the free advertisement .

Question

how many other contestants did the company , that had their ELJjshown for free ,
beat out ?

Figure 5: Visualizing Question-to-Context Attention



4.3.2 Start and End Position Probability

Figure 6 shows the visualization of the start index and end index probability distributions for the
question answering task. The green highlight indicates the start index and the purple highlight
indicates the end index of the answer.

Question

what type of materials inside the cabin were removed to help prevent more fire
hazards in the future ?

Context (highlighted = high start probability)

to remedy the causes of the fire , changes were made in the block ii spacecraft
and operational procedures , the most important of which were use of a
nitrogen/oxygen mixture instead of pure oxygen before and during launch , and
removal of flammable cabin and space suit materials . the block ii design already
called for replacement of the block i plug-type hatch cover with a quick-release
, outward opening door . nasa discontinued the manned block i program , using the
block i spacecraft only for unmanned saturn v flights . crew members would also
exclusively wear modified , fire-resistant block ii space suits , and would be
designated by the block ii titles , regardless of whether a 1lm was present on the
flight or not .

Figure 6: Visualizing Start and End Position Probability

4.3.3 Robustness of DCN to Local Maxima

The DCN model owes its robustness to local maxima to the iterative reasoning scheme of the de-
coder. Consider the example below:

Context: the crew of apollo 8 sent the first live televised pictures of the earth and the moon back to
earth , and read from the creation story in the book of genesis , on christmas eve , 1968 . an estimated
one-quarter of the population of the world saweither live or delayedthe christmas eve transmission
during the ninth orbit of the moon . the mission and christmas provided an inspiring end to 1968
, which had been a troubled year for the us , marked by vietnam war protests , race riots , and the
assassinations of civil rights leader martin luther king , jr. , and senator robert f. kennedy .

True Answer: one-quarter (start_pos:20, end_pos:20)

Predicted Answer: one-quarter (start_pos:20, end_pos:20)

In Figure 7, we observe how the model wrongly predicts the answer to be ’an estimated one-quarter’
(start_pos: 16, end_pos:20) in the first iteration, but recovers from the local optima to correctly deter-
mine the answer span to be (start_pos:20, end_pos:20)
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| l end_pos: 20 ‘
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Figure 7: Iterative Reasoning by the Dynamic Pointing Decoder




4.4 Results

The incremental development of the model shed light on the contribution of each of the components
to the the overall system. We were able to clearly observe how attention is a powerful tool to solving
the complex task of question-answering. In addition to reimplementing the Dynamic Coattention
Network [1], we were also able to successfully experiment and determine how a modeling layer on
top the DCN encoder module can result in a significant increase in performance.
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Figure 8: Performance Comparison

We present the dev and train F1 scores achieved by our DCN model and DCN + Modeling Layer
model in Figure 8. We also notice that the modeling layer alleviates overfitting. We argue that
this could be because the modeling layer captures more complex interactions between the query-
dependent context with itself. The results of all experiments have been tabulated below:

Performance Comparison
Our Implementation (Evaluated on Dev Set)
F1 EM

Model Score Score
Baseline Model 43.652 | 34.428
Bidirectional Attention + Baseline 50.375 | 40.639
Coattention + Baseline 65.994 | 55.09
Coattention Network + Modeling Layer 67.812 | 57.569
Dynamic Coattention Network 71.865 | 61.145
Dynamic Coattention Network + Modelling Layer TBD TBD

Reference Implementation
Dynamic Coattention Network (DCN) 75.6 65.4
Bidirectional Attention Flow (single) 773 68
Bidirectional Attention Flow (ensemble) 80.7 72.6
r-Net 83.7 76.7

Table 1: Performance Evaluation

5 Conclusion

Our model achieved an overall improvement of 28% in F1 score over the baseline model. Despite
acceptable results, we recognize that question-answering is a challenging task with avenues for
improvement. Future work involves improving the model to perform better on questions requiring
longer answer lengths as well as generalizing for datasets other than the SQuAD.
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