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Abstract

This paper uses Long Short Term Memory Recurrent Neural Networks to perform
document classification on news source articles. We compare two main mod-
els: a basic LSTM network, LSTM, and a sequence autoencoder LSTM network,
SA-LSTM. After tuning network parameters, the basic LSTM network achieved
78.74% accuracy on the test set. After training the sequence autoencoder for 120
epochs, the SA-LSTM classification model achieved 70.61% accuracy on the test
set. Based solely on these experiments, we see that the basic LSTM model per-
formed better on the dataset. However, it is very likely that pre-training on the full
dataset, rather than a subset, could increase dev accuracy for the SA-LSTM.

1 Introduction

Document classification has become an increasingly important task in today’s society. Most recently,
with the proliferation of consumption of fake news articles circling social media, and its effect of
polarizing the political landscape of the United States through misinformation and candidate slander
[1], classifying a news article as “fake news” is of paramount importance. As a step in this direction,
we experiment with two different types of recurrent neural networks: a basic LSTM network and an
SA-LSTM network inspired by the work done by Google researchers [2]. Each of these networks
are 5-class news source classifiers capable of separating news articles based on their publication
source.

2 Background

With the phenomenon of fake news having tangible affects on our society—particularly in the realm
of politics [S]—scholars have directed their attention on rectifying the problem with the intervention
of artificial intelligence and machine learning strategies. The Fake News Competition was thus cre-
ated by Rao Delip and Dean Pomerleau. The Fake News Competition structured its focus primarily
on stance detection of news articles. More formally, Delip and Pomerleau formalized the task of
detecting fake news as (1) determining the probability of relatedness between the the heading of
an article and its content, and (2), if the content and heading relatedness is significant, determin-
ing whether the article content agrees, disagrees, or further discusses the heading title. With this
framework, an article with a low relatedness between its content and heading, or an article with
content that disagrees with the heading title, may be flagged as fake news. Our opinion on the
matter is that fake news can be detected more simply by determining the publication source of the
article in question. Ideally, with the help of journalists and experts, we could create a list of both
reputable and non-reputable news sources. In this manner we collapse the task of detecting fake
news into classifying the publication source of an article. This is ideal as we believe that (1) our
method could potentially be developed and deployed by people without a high level of knowledge in
Natural Language Processing and (2) as budding Natural Language Processing researchers and stu-
dents, publication classification is an ideal task to build our skill and know-how in a limited window



of time. We primarily reference and attempt to re-create and improve upon a paper published by
Google [2] that makes use of a Sequence Autoencoder Long Short Term Memory model, SA-LSTM,
to classify various types of data. The SA-LSTM’s robust performance on multiple datasets makes it
an attractive candidate for publication classification.

3 Approach

3.1 Dataset

For this task, we used a dataset titled “All The News” from Kaggle. The author of
the dataset scraped news articles from major news sources on the web using a pro-
gram called BeautifulSoup and stored said data using Sqlite. =~ Each row of the dataset
includes the author of the news article, the data, the publication name, an Sqlite id,
and the full article content. For the reader’s convenience, the dataset can be found
through the following link: https://www.kaggle.com/snapcrack/all-the-news
We used 11,100 articles from each of the following pub-
lication sources: Washington Post, NPR, New York Post,
CNN, and Breitbart. We chose these articles because we
1 believed they exhibited a variety of news stances; Breit-
=l kB g I F 3 bart leans to the far-right, New York Post is a tabloid, and
L[] ] | | the remaining three tend to be fairly mainstream. Our
Train, Dev, and Test split was 60%, 20%, and 20% re-
Figure 1: ”All The News Dataset” spectively. (Unfortunately, we realized too late that the
test data contained no articles from the New York Post.
As a result, confusion matrices for the test data rightfully

have no correct labels.)
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3.2 Processing the Data

Making use of GloVe vector [4] representations with a dictionary of 68,200 words, we created an
embedding matrix. Each row of the embedding matrix was a unique Glove vector, with the exception
of two rows. Out of vocabulary words (words that were not present in the GloVe dictionary), as well
as an end-of-sentence token were represented by two rows of zeros. To leverage said embedding
matrix, we created a dictionary mapping each word to an integer representing the row index of its
GloVe vector in the embedding matrix. Each article was tokenized, converted to lower-case, and
truncated to the first 100 words. Punctuation was treated as separate text.

3.3 Baseline Model

Our baseline model comprised of a simple 5-class classifier. For each article, we averaged the GloVe
vectors for each of the 100 words; this single vector was the input to the model. The input vector
x was multiplied by a weight matrix W, and the softmax function was applied to the vector after
a bias was added. The model aimed to reduce the cross-entropy loss between the predicted vector
9y = Wax + b and the label vector y, (a one-hot vector representing the class of the article). This
model provides a good baseline because information about individual words is lost when averaged.
We trained the model for 45 epochs using the Adam optimizer with a learning rate of 0.005. This
model received a dev accuracy of 43.5% and a test accuracy of 42.5%; F1 scores on the test set
were the following: New York Post: 0.0%, Breitbart: 53.243%, CNN: 56.087%, Washington Post:
38.904%, NPR: 47.69%. The confusion matrix for the dev set shows that 1) classification of these
news articles is possible and 2) CNN and Breitbart might be particularly distinguishable among
these classes.

3.4 Basic LSTM

To investigate classification with recurrent neural networks (RNN), we use as a unidirectional Long
Short Term Memory model. As with the baseline, the correct label is a one-hot vector representing
the correct class. Each article is represented as a vector of the word indices in the embedding matrix
and fed into the network. After replacing the word indices with their GloVe vector representations,



1000
New York Post 932 1000 New York Post

800

214

Breitbart 800 Breitbart

600
NN 234

260 'ashington Post H

neR | 461

400

'ashington Post

200
NPR

New York PostBreitbart ~ CNN Washington Post NPR New York PostBreitbart ~ CNN Washington Post NPR
Predicted label Predicted label

(a) dev dataset (b) test dataset

Figure 2: Confusion Matrices for the baseline softmax classifier

the input vector is fed into an LSTM cell, where it is unrolled over the length of the sequence. The
final hidden state of the LSTM cell is then multiplied by a weight matrix U. The final prediction
9 = softmax(Ux + b). We again use the cross-entropy loss and an Adam optimizer. Throughout the
course of our experiments, we incrementally tune our basic LSTM by adding features and testing
the classification accuracy of the model. In the experiment section, we discuss increasing the hidden
layer size of the model, changing the learning rate parameter, including dropout, and adding gradient
clipping to protect the model from gradients becoming too small or too large.

3.5 Sequence Autoencoder LSTM

A paper published by Google [2] describes how accuracy on a supervised classification task can
increase when the RNN classifier is initialized with weights obtained from a pre-training step, rather
than being initialized randomly. This allows the classifier network to begin training with some prior
knowledge, based on a learned representation of the input sequences; ideally, the pre-training helps
the network to begin its search for a minimum loss from a state that is closer to the minimum,
rather than a random point in the search space. In the paper, the pre-training step consisted of
training a sequence autoencoder on unlabeled data, and using the weights of the hidden layer from
the autoencoder after said model finished training. Overall, we refer to this algorithmic strategy
jointly as a Sequence Autoencoder LSTM, further abbreviated as SA-LSTM.

In our model, we first train the sequence autoencoder on a subset of the training data. Each article u
is represented as a list of indices that correspond to the index of the word in the embedding matrix.
We also append an end-of-article token to the end of w, resulting in input vector v. The autoencoder
can be decomposed into two parts: the encoder and the decoder. The encoder is implemented as
single-layer, unidirectional LSTM that receives v as input. Its final state is then used as the first
state of the decoder, which receives vector v with the end-of-article token appended. The goal of
the decoder, which is also a unidirectional, single-layer LSTM network, is to output the original
article vector v. Since the goal of the autoencoder is to faithfully reconstruct article v (minimize
cross-entropy loss), the hidden states of the encoder should contain a useful representation of the
words in the training set.

For our purposes, the pre-training step consisted of training a Sequence Autoencoder on the first
1500 articles in our train dataset. The following figure, taken from [2], provides a simple illustration
of an SA-LSTM. The left half of the model represents the encoder, and the right half symbolizes the
decoder.

4 Basic LSTM Experiments

We ran a series of experiments to tune particular hyperparameters in our model. For each experi-
ment, we trained the models using 2-3 different parameters and evaluated the model that achieved the
lowest training error on the dev set. (The results from experiments build upon each other chronolog-
ical order; assume the parameter value finalized in the previous experiment is used in the subsequent
experiment, unless specified otherwise.) After tuning, the final model had the following parameters:
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Figure 3: A simple diagram illustrating an SA-LSTM. W, X, Y, and Z represent the words in one
article, where the <eos> token represents the end of an article.

hidden layer size of 256, learning rate of 0.005, LSTM input and output dropout (keep rate 80%),
and gradient clipping (max gradient norm of 5.0). With these parameters, we received 59.% on
the dev set and 78.74% on the test set. F1 scores on the test set were as follows: New York Post:
0.0%, Breitbart: 94.847%, CNN: 96.403%, Washington Post: 66.889%, NPR: 65.291%. A sample
of misclassified articles is provided below in Figure 1. We suspect that NPR and Washington Post
are often misclassified as both tend to contain non-partisan, mainstream content.

Table 1: Sample of Input Articles and Incorrect Predictions

Article Predicted Actual
this holiday shopping season , retailers are eagerly promoting their programs , in which shoppers New York Washinton
can place an order online and pick it up at a nearby store . the big chains are salivating over the P ost Post

possibility this model lets them fulfill your orders faster in a matter of hours , not days and
it allows them to utilize their outposts in the fight for your spending . but last year during the
seasonal rush , many shoppers found that these pickup programs were a mess . retrieving their
orders took a frustratingly long time , because of

we ve always been a <UNK> kind of nation . ben franklin didn t just invent the lightning Washlngton NPR
rod . his creations include <UNK> , swim fins , the catheter , innovative <UNK> and more POSI
. franklin , who was largely may have been a genius , but he wasn t really an outlier when
it comes to american making and tinkering . the personal computing revolution and ethos of
disruptive innovation of silicon valley grew , in part , out of the <UNK> of the <UNK>
computer club , which was founded in a garage in

or years , new jersey drivers enjoyed relatively cheap gas thanks to one of the lowest state Washlngton NPR
gasoline taxes in the country . the state s gas tax hasn t gone up since 1988 . but that all POSI
changed tuesday , when it jumped by 23 cents a gallon . across the state on monday , drivers
raced to fill up their tanks before a tax hike took effect . i already went to a couple of different
stops , and they were out of regular gas , said tobin <UNK> , as he topped

4.1 LSTM Hidden Layer size

We first experimented with different sizes for the hidden layer of the LSTM. We tried 256, 300, and
512; we chose these numbers because previous homeworks involving tasks of similar scope used a
hidden layer size of 300, and we hoped that choosing powers of two greater and smaller than 300
would allow us to try different values while shortening the computation time slightly. After training
for 45 epochs, accuracies on the dev set were 76.59%, 76.18%, and 77.87% for hidden layer sizes of
256, 300, and 512 respectively. Interestingly, all models have the highest per-class F1 score on CNN
and Breitbart (98.83%, 98.86%, and 98.70% for CNN; 94.38%, 95.28%, and 95.28% for Breitbart).
The Washington Post and NPR were the most confused classes regardless of hidden layer size. With
hidden layer sizes 256 and 312, F1 scores for these classes hover around 57-60%. However, with a
hidden layer size of 512, the F1 score for NPR reaches 67% and the F1 score for the Washington
Post drops to 56%, suggesting better elucidation of the NPR class.

4.2 Learning Rate

We then turned our attention to the learning rate. The above experiments were conducted with a
learning rate of 0.001. Since the Adam optimizer decays learning rate as training proceeds, we
also tested a higher learning rate (0.005). After training for 20-30 epochs, accuracies on the dev
set were 77.88%, 76.75%, and 78.51% for the respective hidden layer sizes. Increasing learning
rate reduced dropped the lowest training loss by an order of magnitude across all hidden layer sizes
(from 0.15-3 to 0.02-.03). These confusion matrices show the same pattern of high accuracy for
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Figure 4: Confusion Matrices for Learning Rate 0.001

CNN and Breitbart, but these models make a better distinction between Washington Post and NPR
(excluding hidden layer size of 300). Although the accuracy for hidden layer size 512 was slightly
higher, we chose a hidden layer size of 256 for the following reasons. Firstly, a smaller hidden layer
size allowed for faster training. Additionally, a hidden layer size of 512 led to a training loss of
0.026 and a dev loss of 1.11, while a hidden layer size of 256 led to a training loss of 0.05 and a
dev loss of 1.09. To avoid potential overfitting in future experiments, we chose the model with the
lower dev loss. For these reasons, we chose to use a hidden layer size of 256. Since a learning rate
of 0.005 produced a higher accuracy for this hidden layer size, we use this value for the subsequent
experiments.
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Figure 5: Confusion Matrices for Learning Rate 0.005

4.3 Dropout (Embedding layer)

The authors of [2] found that random dropout at the embedding layer, as well as random word
dropout, helped improve the accuracy of their model. Following suit, we experiment with random
dropout at the embedding layer, trying a keep rate of 80% and 50% (dropout rates of 20% and 50%
respectively). Using the parameters decided in the above section and a keep rate of 80%, we achieved
77.88% dev accuracy. In prior experiments (not in paper), when using a hidden layer size of 256 and
a learning rate of 0.001, the dev accuracy after 20 epochs of training with keep rate 80% was higher
than with keep rate 50% (67.43% vs. 67.23%). We extrapolated from this prior experiment that
lowering keep rate lowered dev accuracy. (This make sense, as a lower keep rate forces the model
to learn just as much information with fewer words in the input embedding.) Since the dev accuracy
with embedding dropout was lower than accuracy without embedding dropout (keep rate 100%), we
did not adopt this change.

4.4 Dropout (LSTM cell)

We also applied dropout to both the input and output of the LSTM
cell. As in the experiment above, we experimented with keep rates
of 80% and 50% (dropout 20% and 50%). We achieved dev accu-
racy of 78.91% with keep rate 80%, higher than what we achieved
without dropout at the LSTM cell. In prior experiments (not in pa-
per), when we used learning rate 0.001, we noticed that keep rate
50% causes accuracy to suffer; the dev accuracy was 78.51% with

Figure 6: Confusion Matrix
for LSTM Cell Dropout



keep rate 80% while the dev accuracy with keep rate 50% was 75.58%. We assumed a similar drop
in accuracy would accuracy for learning rate 0.005, and thus chose to use dropout on the LSTM cell
with keep rate 80%. Notice that this model has a greater accuracy for New York Post; similarly, the
model correctly classifies a greater number of Breitbart and CNN articles (the number of articles
incorrectly classified for Breitbart decreases from Breitbart 69 to 32, and for CNN it decreases from
9 to 7). Although the F1 score for Washington Post decreases slightly from 61.0% to 60.0%, the F1
score for NPR increases from 64.5% to 68.4% (no dropout vs. LSTM dropout).

4.5 Gradient Clipping

Our last experiment for this model was gradient clipping. Although vanilla recurrent neural networks
suffer from the exploding gradients more than LSTM recurrent neural networks, we tested the effects
of clipping the gradient to a fixed maximum gradient norm. With a maximum gradient norm of 1,
we achieved a dev accuracy of 77.81%. With a maximum gradient norm of 5, we achieved an dev
accuracy of 79.4%. Since this value of maximum gradient norm produced the highest dev accuracy
of all experiments, we chose this configuration of parameters.
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Figure 7: Confusion Matrix for Gradient Clipping

5 Sequence Autoencoder LSTM Experiments

5.1 Sequence Autoencoder

Our original aim was to train the autoencoder on all articles in the training data, unrolling the neural
network over all 100 words in the article. We planned on using the same (or very similar) parameter
values that we tuned for the basic LSTM. However, due to out-of-memory errors on the Azure VM
and time constraints, we modified the parameters as necessary. As aforementioned, both the encoder
and decoder are single-layer, unidirectional LSTM networks. We use a hidden layer size of 100 and
only use the first 70 tokens in each article. We continued to use the Adam optimizer with a learning
rate of 0.005 to minimize the cross-entropy loss. We also used clipped the gradient at a maximum
gradient norm of 5. As is typical of sequence-to-sequence models, training was slow. We trained for
a total of 120 epochs. After training, we examined the cross-entropy loss and the perplexity of the
model, both of which are pictured below. At epoch 1, the cross-entropy loss begins at 7.23, and by
epoch 120, it drops to 4.27. Correspondingly, the perplexity of the model begins at 1391.29 at epoch
1, but drops to 71.27 by epoch 120. The steady downward slope of both of these plots implies that
with more training, these values would continue to drop to some unknown constant.

5.2 LSTM Classifier

Once the sequence autoencoder had been trained, we trained and tested the LSTM classifier net-
work initialized with weights from the encoder. To be able to initialize the LSTM weights with
the encoder’s weights, we used a hidden layer size of 100, the first 70 tokens in the article, the
Adam optimizer with learning rate of 0.005, and gradient clipping for gradient norms above 5. After
training for 20 epochs, we tested the classifier on the dev and test set. Accuracy on the dev set
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Table 2: Sample of Input Articles and Incorrect Predictions

Article Predicted Actual
mosul , iraq hundreds of thousands of people who remain in this northern iraqi city are strug- New York Washinton
gling to find food and safe drinking water as the protracted offensive against islamic state mil- POSt POSt

itants <UNK>> their neighborhoods . when the battle began seven weeks ago , aid agencies
feared that an exodus from the city would overwhelm already crowded camps . instead , most
people heeded government advice to stay in

from the very beginning , george lucas knew he had a life force of a young actress on his hands NPR Washlngton
. when first casting his star wars films , lucas seriously considered such other budding teenage POSt

talents as jodie foster and terri nunn . yet carrie fisher , still barely an adult at the time , had a
silly , presence that <UNK> well with future mark hamill

voters in oceanside , calif. have chosen a dead man over a woman , gary ernst as city treasurer Washlngton N PR
despite the fact that ernst died in september . a prominent city councilman had urged voters to POSt
elect ernst rather than challenger nadine scott , promising to appoint a replacement for ernst .
ernst s death made headlines in san diego county when he passed away of natural causes at

was 92.44%; the model produced the following F1 scores: New York Post: 83.794%, Breitbart:
98.513%, CNN: 99.706%, Washington Post: 87.886%, NPR: 88.545%. Notice that the F1 scores
for CNN and Breitbart and very near 100%, and the F1 scores for the other three classes are not far
behind. However, when we tested the model on the test set, it achieved an accuracy of 70.61%, with
the following F1 scores: New York Post: 0.0%, Breitbart: 92.559%, CNN: 98.258%, Washington
Post: 55.573%, NPR: 50.043%. The F1 scores for Breitbart and Cnn are comparable. However, the
F1 scores for the Washington Post and NPR are very low, near the baseline F1 scores. This could
indicate a greater similarity between the train and dev sets. However, this drop in accuracy could be
attributed to the autoencoder only learning representations for the first 1,500 articles in the training
data; if the test data looks very different from these first few articles, the learned representations do
not help improve the model’s classification accuracy on these particular examples. It is imperative
that the autoencoder learn a robust representation to be able to achieve a good accuracy.
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Figure 9: Confusion Matrix for SA-LSTM model



6 Conclusions and Future Work

In this paper, we classified 5 news sources using two primary neural architectures—a basic LSTM
classifier and a sequence autoencoder LSTM classifier. The basic LSTM classifier achieved a higher
test accuracy than the SA-LSTM. However, this in no way rules out the effectiveness of pre-training
LSTM classifiers used on this dataset. In future experiments, the dataset should be randomized
before splitting into train, dev, and test, even if the source dataset claims to have done so already.
Future experiments should revolve primarily around improving the autoencoder. In an ideal situa-
tion, memory constraints would not be a concern; however, since they often are, we could test the
effect of reducing the vocabulary size of the autoencoder rather than training on fewer articles. In
our model, we used the same parameters that led to good accuracies for the basic LSTM classifier in
the SA-LSTM; instead, there should be a rigorous parameter search for both the autoencoder model
and the LSTM classifier initialized with its weights. Most important, however, would be continuing
to train the autoencoder until the either the perplexity or the loss has crossed below some threshold.
After adopting these changes, we would have a better chance of evaluating whether the SA-LSTM
is a markedly improved model over the basic LSTM. The high dev accuracy is one indication that it
is, but future experiments should be conducted to rule this conclusively.
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