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Abstract

This paper tackles the task of Question Answering in Natural Language
Processing by using a recurrent neural network with bidirectional attention flow
and smart span selection over the probability distributions of start and end words
at test time. The paper focuses on the SQuUAD dataset, Stanford’s Question
Answering system Dataset, on which best final scores of F1 = 71.88 and EM =
60.5, were obtained.

1 Introduction

Question Answering is a task in Natural Language Processing concerned with building systems
that are able to read and understand information from a piece of text, and then answer questions
based on it as accurately as possible. The task has many applications, from summarizing class
notes, newspaper articles or academic papers, to being able to provide useful information extracted
from a conversation or generating abstracts. The wide variety of intended audiences that could
benefit from advances in the area of question answering makes this an active field of research in
natural language processing. While answering questions based on a paragraph could involve
generating new text, this paper focuses on extracting the span of text in the provided paragraph
that answers the question as accurately as possible. Hence, the system is trying to “highlight” the
part of the paragraph that best matches the answer to a given question. We use the SQuAD
dataset[1], which contains 100K questions on paragraphs taken from Wikipedia. The dataset is a
popular one, and teams from different research groups, either in academia or industry are actively
creating models to tackle the task[2]. We propose a model that uses a recurrent neural network and
bidirectional attention flow with smart span selection over the probability distributions of start and
end words at test time. The proposed model achieves a score of F1 =71.88 and EM = 60.50,0n the
dev set.

2 Related Work

There are a number of approaches that are known to address the task of question answering fairly
well. One such category are the models that rely on having a RNN encoder layer combined with
different types of attention between the context and the question. An RNN-based model makes
sense in the context of wanting to keep track of the shared information between the context and
the question being asked, while attention is useful for combining the representations for the
context and the question. The provided baseline for the project used a basic dot-product attention,
but more complex types have proved to achieve good results. One such type is co-attention[4],
which is a high-performing SQUAD model that involves a two-way attention between the context



and the question and attention attending once more over attention outputs. Another
high-performing model involves a Context-to-Question attention and a self-attention layer[6].
More attention techniques, such as Fine-Grained Gating[5] or Multi-Perspective Matching[7] are
also possible. Other approaches involve using character-level CNNs[3] to learn character
embeddings, systems that condition the end prediction on start, or span distributions that concern
themselves with learning the joint probability distributions over contexts and questions. At the
core of the model proposed in this paper there is an RNN encoder layer using bidirectional
attention flow, architecture which has been proven to give good results[3] for the task at hand.
Complete details about the architecture of the model are provided in Section 4.2.

3 Problem Statement

In the question-answering task, we are concerned with answering a question about a paragraph as
accurately as possible, One particularity of the type of data used in this paper is that the answers to
the questions are taken straight from the paragraph. Rather than generating new answers by itself,
the model is concerned with finding the span of words in the paragraph that answers the given
question the best. For instance, one entry in the dataset and its question and answer could be:

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL)
for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National
Football Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super Bowl title. The game was
played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was
the 50th Super Bowl, the league emphasized the "golden anniversary" with various gold-themed initiatives, as well
as temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under which the
game would have been known as "Super Bowl L"), so that the logo could prominently feature the Arabic numerals
50.

Which NFL team represented the AFC at Super Bowl 50?
Ground Truth Answers: Denver Broncos Denver Broncos Denver Broncos

Figure 1: Example of a {context, question, answer} in the dataset. Picture taken from the SQuAD
official website[2]

The model is essentially trying to “highlight” a portion of the paragraph that gives the best answer.

The goal of the model then becomes generating two indices, iy, and i, corresponding to the
starting and ending indices of the words in the paragraph that give the span of text that best
answers the question.

4 Approach

The section below describes the model architecture of the model, built on the provided baseline
and the model suggested in the BiDAF paper[3].

4.2 Model architecture

Question answering tasks often involve some attention mechanism that captures which part of the
paragraph (context) the question should be focusing on when generating the answer, one word at a
time. The model proposed in this paper uses bidirectional attention flow, which is built on the
insight that attention should go both ways: both from the question to the context and from the
context to the question. The architecture of the final model is inspired by the approach described



in the baseline provided and the BiDAF paper[3] and is the following:
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Figure 2: Model architecture

Input: Each context is represented as a sequence of d-dimensional fixed, pretrained GloVe word
embeddings x, x,,...,xy € R?, where N = context length

Similarly, each question is also represented as a sequence of d-dimensional fixed GloVe word
embeddings y,, ¥,,....y,, € R? where M = question length

RNN Encoder Layer: Each of the embeddings are fed into a bidirectional LSTM layer, shared
between the context and the question. For both the context and the question, the RNN encoder
layer outputs a sequence of forward and backward hidden states, where each
Gt Cobugiward s Tptorwards Ur-bagbward R" , for a predefined size of the hidden states h.

[cl—forward> Cl—backward > -++> cN—furward’ cN—backward] = blLSTM([xl’ X5 .- ’xN])

[ql—forward’ 91 -backward > > qM—forwart/i7 qM—backward] = blLSTM([yl’ Yo wes ’yM])

The choice of using an LSTM as opposed to a GRU for the RNN cell was made because it gave
better results on the dev set.

The forward and backward states are then concatenated together with their sum, to obtain the
context hidden states c; and the question hidden states q;:

_ 3h
¢ = [ci—forward> Ci-backward > ci—forward + ci—backward] €R

e 3h
qj - [qj—forward’ qj—backward > qj—forward + qj—backward] €R

I experimented with different ways of obtaining the new hidden states ¢; and g; from the backward



and forward hidden states, including adding and averaging them, but the concatenation above gave
the best results.

Bidirectional Attention Layer: Firstly, we compute the similarity matrix S € R*™"  between
the hidden context and question states. Each entry Sij in the matrix corresponds to how similar
context ¢; and question g, are and is defined as: S; = wSTim[cl.;qj;cl. °q;] € R, where w isa
weight vector learned during training. Then, we focus on the two types of attention:
Context-to-Question Attention and Question-to-Context Attention

1. Context-to-Question Attention: The first step is to compute the Context-to-Question
Attention output. In order to do that, we take the row-wise softmax of S, which is then
used to weigh the question hidden states q; to get the Context-to-Question Attention

outputs a, :

o = softmax (S,) € RM foralli=1, ... N

M
a,= Y d'q; € R’ foralli=1,. ... N

j=1
When computing the softmax over the rows of S, a mask is being used, to account for the
fact that some context and question entries are being padded with Os to fit in the
maximum context length and question length, respectively. The mask for S is being
computed from the given context and question masks.

2. Question-to-Context Attention: Next, we compute the Question-to-Context Attention.
For each context c;, we take the maximum of the corresponding row in S, which we then
use to get a softmax distribution 3 over all the context locations. The result is used to get
the Question-to-Context Attention output ¢’

m; = max (S;) € Rforalli=1,....N

B = softmax(m) € RY

¥ 3h
c = _Zl Bic, €ER
iz

The final outputs b,of the bidirectional attention layer are then computed by the following
concatenation:

b,=[c;a;c;0a;¢c,0c] € R foralli=1,....N

[ER Ee ]

RNN Encoder Layer: The outputs b, from the Bidirectional Attention Layer are fed into an RNN
Encoding Layer that uses a bidirectional LSTM cell to generate forward and backward states for
each b;:

[bl—forward’ bl—backward 3 *5ey bN—farward’ bN—backward] =biLSTM ([bl’ b2’ s bN])

Second RNN Encoder Layer: The outputs from the previous layer are fed into another RNN
encoding layer to get the final outputs d, :

[d1> d R d4N] = biLSTM [bl—forward’ bl—backward> o bN—forward’ bN—backward]

Output Layer: Finally, each of the previous outputs d; are being fed into a fully connected layer
with N number of outputs and a ReLU activation function to get N outputs a’l :

d =ReLUWd, + q)foreachi=1,...,N

Next, we use use the outputs d;. to get scores 57", sel."d for each context location being either a



start or an end word for the answer:
start — T '
5] w. .d'+ b

start i start

foreachi=1,...,N

foreachi=1,...,N

end = T !
si Wend di * bend

Finally, we take a softmax over each of 5", fl."d to get the probabilities that the answer starts or
ends with the context word ;.

pi" = softmax (s7") foreachi=1,...,N

p" = softmax (s"¥) foreachi=1, .. N

Loss: The loss function L is the sum of the cross-entropy loss for both the start and end locations,
averaged across the entire batch of size B:
end(l-

k
L =( ¥ ~log p" (i)~ log p )k

end, j
g=1

where k is the total number of items in a batch, and i -and i _ .are the true start and end

start, j end, j
locations for the answer on a single item j. During training, we minimize this loss function using
the Adadelta optimizer.

Prediction: During test time, for a given context and question pair, we predict two indices 7, j,
corresponding to the start and end indices respectively, that satisfyl <i<CL-5,

i <j <min(i+ 10, CL)and maximize p”"%j‘f"d where CL is equal to the length of the given

i
context. In contrast with the baseline model, which was taking i = argmax(p:“"), j = argmax( pje.”d
), predicting the two indices independently from each other, this model is looking to maximize the
joint probability of both the start and end indices, and takes into account the fact that the end index
has to be after the start index (in the baseline model, there is nothing that prevents the predicted
end index to be before the predicted start index).

Start index: The choice of having the start index igo only up until CL—k for some positive
value k came after realizing that the answer to a question is not very likely to start towards the end
of the paragraph, so there should be some range of words at the end of the paragraph that should
not be considered as start indices. The same approach was tried by setting a lower bound p <i
from which the start index could start at, for p > 1. The search gave worse results on the dev set,
suggesting that it should not be assumed that the answer cannot start at the first indices in the
paragraph. Intuitively, the insight makes sense, as by setting the upper bound for the start index to
CL -5 we are only restricting answers not to start less than five words before the end of the
paragraph, but we are not restricting that the answer itself cannot be contained towards the end of
the sentence. However, if we restrict the start index not to start at the first indices in the paragraph,
we are completely disregarding information from a part of the paragraph. This is not necessarily a
good assumption, as there is nothing that prohibits the answer of a question to start at the very first
indices of the paragraph.

End index: The first restriction on the end index is that it should be as least as large as the start
index. This is because we can’t have an answer that ends at index smaller than the start index.
Secondly, the fact that the end index j should go only up to min(i + k', CL)for some positive
integer k> was motivated by the insight that answers that come from a paragraph are not very
likely to be of very large length, so their length must have some bound k’. After trying different
values for k’, k> = 10 gave the best results on the dev set. We are taking the minimum between i +
10 and CL to account for the fact that some answers that start towards the end of the paragraph can



only span until CL, not 10. Below are the F1/EM scores for different models for i, j, which
motivated the choice above.

F1 score EM score

) . e 71.8820 60.5014
1<i<CL-5,i<j<min(i+10, CL), argmax(pls_’“”pf"d)

71.3774 60.0378
1<i<CL-5,i<j<min(i+15, CL), argmax(pf’“”pf"d)

) L. _ 71.07083 59.9526
1<i<CL,i<j<min(i+10, CL), argmax(p"?’“”pj?"d)

71.3406 59.9526
1<i<CL,i<j<min(i+15, CL), argmax( pj’“"p;"d )

i o 71.1302 59.3945
1<i<CL,i<j<CL, argmax(pf’””pj‘?”d)

end) 69.5170 58.4295

i =argmax(p{"), j = argmax( I

(baseline model)

Table 1: Comparison of different models for choosing the start and end indices at test time

5 Experiments

Below there is a description of the experiments I performed during training.

5.1 Dataset

The dataset used the SQuUADJ[1] dataset, Stanford’s Question Answering Dataset, proposed and
maintained by Stanford’s Natural Language Processing group in the Computer Science
Department. The dataset contains over 100K paragraphs from Wikipedia, along with questions and
answers crowdsourced using Amazon Mechanical Turk. Each entry in the dataset contains a
context (a paragraph from Wikipedia), a question, and an answer as a span from the paragraph, all
tokenized and lowercased.

4.2 Training

Below are the experiments I tried during training. For each experiment, I assessed its performance
using the F1 and EM scores on the dev set from the Tensorboard graphs.

4.2.1  Training Specifications that were kept in the final model

The following training specifications were used on the best model:

Optimizer: During training, I experimented with different optimizers (RMSProp, Adam,
Adadelta, Adagrad, Momentum), and learning rates. I achieved the best results with the Adadelta
optimizer with a learning rate of 0.5.



Training time: I trained my best model for 95.5K iterations, which took a little over three days.

Regularization: In order to avoid overfitting, I used dropout on all the LSTM cells. I
experimented with various values for the dropout, and the best results were obtained with dropout
0.15.

Batch size: I used a batch size of 50. The choice of 50 was made such that the model would fit
into memory.

Context length: I used a context length of 400. The initial context length was of size 600 and
encompassed more context information. However, due to the dimensions of the model, I had to
reduce both the batch size and the context length in order to be able to fit the model in memory. I
experimented with reducing the batch size even more, but context length of 600 still proved worse
performing than context length 400 in terms of training time: ~9s/batch for context length of 600,
in comparison to ~2s/batch for context length of 400. Because of the significantly faster training, I
kept context length of 400. I also tried decreasing context length even more, but I observed
significantly worse performing results than context length 400, so I decided to keep 400.

Types of RNN cells used: The baseline code was using GRU cells in the RNN encoder layer. 1
experimented with LSTM cells, which provided better results, so were kept in the final model.
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Figure 3: Tensorboard graphs showing the EM, F1 and loss of the baseline model on the dev set of
using GRU (orange) versus LSTM (blue) cells

4.2.2  Other training specifications tried that were not kept in the final model

There have been a number of other things I tried during training that did not bring major
improvement, so were not kept in the final model:

Changing the embedding size of the GloVe vectors: I experimented with using GloVe vectors
of size 200 and 300, but I did not see any improvements. Hence, I kept the size of the GloVe
pre-trained vectors to 100, for memory purposes.
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Figure 4. Tensorboard graphs showing the EM, F1 and loss of the model in initial stages on the
dev set by using GloVe vectors of size 100 (blue), 200 (gray) and 300(orange)

Training the word vectors: I experimented with training the word vectors embeddings, but did
not see any improvement. While the F1 and EM values on the training set increased significantly,



the values on the dev set decreased, suggesting that the system was overfitting. Because training
the word vectors was also computationally expensive, besides giving worse performance on the
dev set, it has not been used in the final model.

4.2 Metrics

Performance was assessed by the F1 and the EM scores, as well as the value of the loss on the dev
set. The F1 score is a harmonic mean of precision and recall, while EM score is a binary metric
assessing whether or not the predicted output matches the true output exactly.

5 Results

This section presents the results I obtained with my model.

4.2 Quantitative
Below, the performance of the model can be assessed in contrast with the performance of the
baseline model. Both the F1 and EM on the dev score increased, where
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Figure 5: Tensorboard graphs showing the EM, F1 and loss of the final model (blue) compared to
the baseline model (orange) on the dev set

The best model achieved a score of F1 =71.8820 and EM = 60.5014, above the provided baseline,
which was only able to achieve scores of F1 =0.39 and EM = 0.28.

4.2 Qualitative analysis
Looking at some of the {context, question} pairs that the model did not perform well on, some
categories of mistakes can be drawn:

1. Time periods
The majority of the mistakes of the model were made when the answer of the question was a year
or a time period, such as “2010”, or “2015”, or “1910-1940”. This suggests that while the model
has good understanding of the overall context of the question, it still has trouble capturing the
temporal relation between elements in the context.

2. Words towards the end of a sentence
Another pattern that came across was that the model seemed to be biased towards predicting
words that were towards the end of the sentence (either the last or close). Often, the model would
predict just one word towards the end of the sentence, when the answer would be somewhere in
the middle of the sentence. This suggests that the model is giving higher weight to the words in the
end of the sentence and still has trouble remembering information from previous parts of the
sentence that could be more relevant.

3. Names of people
One other category of mistakes that the model made were those involving names of people,
especially when more than one person would be present in the context, or when the name of the
person involved two different words (first and last name, for instance). This suggests that the
model has trouble distinguishing between different people in a context or realizing that a person’s



name should involve more than one word.

4. One-word answers
Most of the mistakes being made were answers that predicted just one word, when the true answer
would have been longer. This suggests that the model is being biased towards putting too much
weight on one word in a sentence, in contrast to distributing the probabilities across the sentence.
It suggests that more complexity could be added to the model or that better mechanisms for using
the probabilities of the start and end indices at test time should be employed.

5. Money
Some of the mistakes that the model made involved money: “$1.2 billion allston science
complex”, “$4.093 million available for disbursement”, suggesting that the model doesn’t deal
well with comprehending financial information and putting it into context to understand its
meaning (for instance, it should be able to know to stop after the “billion” tag).

6. Numbers
It seemed that the model made a lot of mistakes that involved numbers. Either time periods,
percentages or money, the model seems to have a hard time grasping numbers. This could suggest
that the model has more difficulty grasping numbers rather than characters in a word. It would be
interesting to study further why that might be the case.

7 Conclusion and future work

The bi-directional attention flow model combined with the smart selection span over the start and
end indices provided good results for the question answering task and significantly improved the
performance of the provided baseline. Both the training and the dev set had similar final values for
F1 and EM scores, suggesting that the model was not overfitting and that was applying everything
it was learning from the training set to the dev set. Even on the training set, however, the model
did not seem to be able to hit more than ~80% F1 and ~65% EM, which could suggest that the
model was still missing some complexity in being able to overfit on the training set. Thus, future
work would include adding more layers to the network and increasing its complexity, in order to
be able to get larger F1 and EM values. Some ideas include adding a self-attention or co-attention
layer, or another RNN Encoder layer. Other possible additions would be adding more features
(Part of Speech, Named Entity or whether the context token appears in the context), training the
character level CNNs and ensembling different methods. Another suggestion would be to find
ways to improve the span selection at test time. This could be achieved, for instance, by using the
distribution of answer lengths or positions in the paragraph of the start and end answer indices on
the training set to generate a better system for predicting start and end indices on the test set.
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