Question Answering on SQuAD

Beliz Gunel Cagan Alkan
Department of Electrical Engineering Department of Electrical Engineering
Stanford University Stanford University
bgunel@stanford.edu calkan@stanford.edu
Abstract

In this paper, we implement Bidirectional Attention Flow(BiDAF) model [1] and
make several adjustments to modeling layers and hyperparameters to increase the
performance. Our single model achieves 78.3% F1, 69.2% EM on the test set and
has a competitive rank on the class leaderboard. We also have higher EM and F1
scores than the original BIDAF implementation with single model.

1 Introduction

Reading Comprehension is a popular Question Answering task, where the system tries to provide a
correct answer to a query about a given context through selecting the span of text in the correspond-
ing paragraph. If successful, this will have many practical applications such as virtual assistants
and automated customer service. It can also be used as a measure of how well NLP systems can
understand various texts for research studies. In order to facilitate the progress in this task, Stanford
NLP group released the Stanford Question Answering Dataset (SQuAD) [2], a reading compre-
hension dataset which has more than 100K question-answer pairs and their corresponding context
paragraphs from Wikipedia. Most successful systems in the SQuAD public leaderboard utilize some
sort of attention mechanism to focus on a small portion of the context and summarize it.

In this project, on top of the given baseline, we implement BiDAF network that models query-aware
representations of the context paragraph without early summarization. BiDAF utilizes character-
level, word-level, and contextual embeddings. We make several modifications to the original BiDAF
network to increase the performance which will be described in detail in Section 3. We also report
our results along with a visualization of our attention mechanism and distributions of the start and
end positions of the predicted answer spans in Section 4.

2 Related Work

Reading comprehension using neural networks has been heavily studied in the past few years as one
can see from the SQuAD dataset leaderboard [3], with Reinforced Mnemonic Reader + A2D ensem-
ble model even surpassing human level performance based on the EM metric. Most high-performing
models use neural attention mechanism to combine the representations for the context and the ques-
tion, which was first introduced in Neural Machine Translation systems. [4] Dynamic Coattention
Network [5] is another successful model, which not only uses two-way attention between the con-
text and the question like BiDAF but also attends over representations that are themselves attention
outputs. There are also models with simpler attention techniques like self-attention implemented in
R-Net [6] and basic dot-product attention.

Using additional features in addition to word vectors such as Part-of-Speech tag, the named entity
type and aligned question embedding is another way to improve performance [7]. Implementing
different strategies to predict the start and end location of the answer are also commonly investigated.
Match-LSTM with Answer Pointer model [8] conditions end prediction on start prediction instead of

predicting each independently. Dynamic Chunk Reader model [9] determines the joint probability
distribution of the start and end locations defined as random variables given the context and the
question.

3 Approach

3.1 Baseline Model

Our baseline model consists of 4 main layers. In the word embedding layer, fixed size GloVe vector
representations of words are obtained. The word embeddings are then fed into RNN encoder layer
which uses a one layer bidirectional GRU to obtain context and question hidden states. Encoder
weights are shared between the context and the question. Attention layer employs a basic dot-
product attention mechanism to combine context and question representations. Blended represen-
tations are obtained through concatenating the attention outputs and context hidden states. Finally,
output layer applies a fully connected layer and two separate softmax layers to the blended repre-
sentations in order to obtain start and end location distributions over the context. During training, the
sum of the cross-entropy losses of start and end locations is used as the loss function. In our baseline,
the predictions are made by taking the argmax over start and end distributions independently.

3.2 Bi-Directional Attention Flow with Character Level Embedding

Our proposed model is a slightly modified version of BiDAF network. BiDAF network introduces
a bi-directional attention mechanism to obtain query-aware context representations without early
summarization. As shown in Figure 1, our architecture consist of 6 main layers that are described
below in detail.

Start End Query2Context
ot e == E= .
my m3 g mr g u
= | [| | | 2
4 Ui
Modeling Layer
L L] []
91 92 ar
Context2Query
Anenfon o Query2Context and Context2Query
el Attention uy
3
h4 ho hr Uy uy 5 Us
Phrase Embed s s Uy
oo | B[L1 &L
Word Embed
o C| = O (] (] -
Character Word Character
Embed layer O O & - | = Embedding Embeddin
g
X4 X2 X3 X7 of Qu
. . — ", | GLOVE | | Char-CNN |
Context Query

Figure 1: Model architecture.

3.2.1 Word and Character Embedding Layer

We use embedding layers at both word and character level to obtain vector space representations of
each word in the context and query. For word embeddings, the context and question are represented

by sequences of d-dimensional pre-trained GloVe embeddings x1,...,Xy € R? and Yi,---,YM €
RY, respectively. These embeddings are fixed and are not updated during training in our model.

Character embedding layer [10] allows us to capture the morphology of the words better and helps
to represent out-of-vocabulary words. Each character in a word has a d.-dimensional embedding
e1,...,er € R% that is randomly initialized in the beginning of training. For each word, these
character embeddings are concatenated and passed through a 1-dimensional convolutional layer.
The convolutions are applied over word length (L), and embedding size (d..) acts as the input chan-
nel size. Number of convolutional filters, f, which is a hyperparameter, determines the output
channel size of the convolutional layer. Output of the convolutional network is then max-pooled
over the feature dimension to obtain fixed-size f-dimensional vector representation for each word.
We call these representations ‘character-level encoding’ for each word. Character-level encodings
are obtained for both context and question.

Finally, we concatenate word embeddings and character-level encodings to have a hybrid represen-
tation of words. Hybrid representations are passed directly to contextual embedding layer. This is
different than the implementation in BIDAF paper since they used Highway Networks as an interme-
diate layer. We wanted contextual embedding layer to work directly with the hybrid representations.
In summary, we obtain the hybrid representations X1, ...,%y € R™/ and y1,..., 1 € R4/ for
context and question, respectively.

3.2.2 Contextual Embedding Layer

Contextual embedding layer encodes hybrid embeddings of question and context to hidden states.
We used 1-layer bi-directional LSTM to capture the temporal interactions between words. The
weights of biLSTM are shared between context and question to enrich their representations. For-
ward and backward hidden states produced by the biLSTM are concatenated to obtain context and
question hidden states h and u, respectively.

{hi,...,An} =bLSTM({Z1,...,ZN})
{wi,...,up} =biLSTM({@1, ..., 9m})

wherehi:[ﬂ:;ﬁ-] Ethfori:1,...,Nandui:[u—'>l-,ﬁ_i] eR*fori=1,...,M.

3.2.3 Attention Flow Layer

Attention flow layer combines question and context hidden states to obtain question aware context
representations. Unlike basic attention, the main idea behind bi-directional attention is that the
attention flows in two directions: from question to context and from context to question. Both of
these are calculated from a similarity matrix S € RY** whose entries are computed as:

T

Sij =w [Ci; QJ; C;i O qJ]

where o represents elementwise product and w € R% is a parameter to be learned. S;; indicates
the similarity between i-th context word and j-th question word.

For Context to Question (C2Q) attention, we take the softmax over the columns of .S and obtain at-
tention distributions a* over question hidden states for each context word. C2Q attention distribution
is then used to take weighted sum of question hidden states to obtain C2Q attention output a;.
a' = softmax(S;.) e RM Vie {1,...,N}
M
ai=) dlu; eR™ Vie{l,... N}

=

We perform question to context (Q2C) attention by first calculating the maximum of each row in
the similarity matrix, and then taking the softmax over the resulting vector. This gives us the sum-
marized (because of the max operation) question attention distribution over context hidden states,
which we denote as 5. We use this Q2C attention distribution to take the weighted sum of context

hidden states and obtain Q2C attention output c.
bi :maXSij eR Vie {1,,N}
J

3 = softmax(b) € RN
N

c= Z ﬂlhz S R2h
i=1

Finally, for each context location i, we combine context hidden state h;, C2Q attention output a;
and Q2C attention output c; to obtain attention flow layer output g;:

gi = [hi;ai;hioashioc e R Vie{l,... N}
3.24 Modeling Layer

Modeling layer consists of two layers of bi-directional LSTMs with hidden size h to scan the context.
Since the biLSTMs take the question aware context representation from attention flow layer, they
capture the relation between context words conditioned on question. In equations:

{G1,-..,gn} = bILSTM({g1, ..., gn})
{mi,...,my} = biLSTM({g1, ..., dn})
H

wheremi:[r—n_;;mi] eR* fori=1,...,N.

3.2.5 OQOutput Layer

BiDAF paper utilizes a biLSTM in the output layer for obtaining logits for the end location. We
observed degraded performance with the output layer used in BiDAF paper, hence decided to use
the output layer in the baseline model. More specifically, we use a fully connected layer with ReLU
activation followed by two separate softmax layers to obtain start and end location distributions over
the context. In order to obtain the logits before taking the softmax, we add downprojecting linear
layers after the fully connected layer. In mathematical terms:

m; = ReLU(Wpcem,; +vpc) €R" Vie {1,... N}
logits’ = wlm; +v, €R Vie {l,...,N}
logits¢ = wlm; +v. €R Vie{l,...,N}

p° = softmax(logits®) € RY

p® = softmax(logits®) € RY

3.2.6 Training Loss Function

We define our loss function as the sum of the cross-entropy losses for start and locations. More
specifically, if the true start and end locations are i € {1,..., N} andi. € {1,..., N} respectively,
then the loss for a single example is

loss = —log p; — logp;.

We take the average loss across the batch during training.

3.2.7 Test Time Prediction

We use the span selection strategy suggested by Chen et al. [7] during test time. In particular, we
predict the span from token ¢ to token j that maximizes pjp¢$ for which ¢ < j <17 + 15.

4 Experiments

4.1 Dataset

As previously mentioned, SQuAD reading comprehension dataset is used for the experiments.
Training set contains around 86K question-answer pairs, and development set contains around 10K.

Based on the distribution of question, context, answer and word lengths in the training set, maxi-
mum lengths are all adjusted from their initial values in the baseline. Histograms for the lengths
are shown in Figure 2. We set maximum length of context to 400, maximum length of question to
30, maximum length of answer to 15, and maximum character length of the words to 20. Smaller
maximum lengths for each helps to use less memory, thus it speeds up the training process.

Train Context Length Train Question Length

18000 25000

16000

14000 | 20000
12000 |

15000 |
10000

Frequency
Frequency

8000
10000

6000 -
4000 - 5000 L

2000

L L . . L L
100 200 300 400 500 600 700 30 40 50 60
Length Length

Train Answer Length Train Word Length

35000

30000

25000

20000

Frequency

15000

10000

5000

L L
10 20 30 40 15 25
Length Length

Figure 2: Histograms of context, question, answer and word lengths in the training set

4.2 Experiments

In our implementation of the network described in Figure 1, we pad the contexts and questions to
their maximum lengths, which are reset to 400 and 30 respectively, with a special padding token. We
also pad character representations of words to their maximum character length, which is reset to 20,
in a similar manner. We use padding masks for logits before feeding them into the softmax layers
to get attention distributions or the probability distributions. These masks make sure that padding
process mathematically doesn’t affect the calculations of the neural network. In order to avoid
exploding gradient problems in our LSTM layers, we employ gradient clipping with a maximum
gradient norm of 5. We use d = 100 dimensional GloVe word vectors for word embeddings, since
GloVe vectors with larger dimensions significantly slow down the training process. We use a hidden
state size h of 200, ADAM optimizer with a learning rate of 0.001 and a batch size of 100 during
training. For the character level CNN, our character embedding size d. is 20, convolution kernel
size is 5 and the number of filters f is 100, as suggested in the handout. We use dropout with a
drop probability of 0.3 [11] in all LSTM layers to reduce overfitting. However, we still experience
a 15.6 point F1 score difference between the training and the dev set after 22.5K iterations. We stop
training when EM and F1 scores for the dev set plateaus.

4.3 Results and Analysis

We use F1 score, the harmonic mean of precision and recall, and Exact Match (EM) score to evaluate
our model. A single model of our implementation achieves 78.3% F1 and 69.2% EM on the test set.
We compare our results to the current state of the art in Table 1. We have higher EM and F1 scores

Table 1: Model performance comparison to state of the art

Model Dev Set (EM/F1) Test Set (EM/F1)
Human Performance -/- 82.3/91.2
R-NET (ensemble) 76.7/83.7 82.1/88.1
BiDAF (ensemble) 72.6/80.7 73.7/81.5
BiDAF (single) 67.7/1717.3 68.0/77.3
Dynamic Coattention (ensemble) 70.3/79.4 71.6/80.4
Match-LSTM with Ans-Ptr (ensemble) 67.6/76.8 67.9/77.0
Baseline 35.1/44.3 34.8/44.2
Our Model (single) 67.8/71.5 69.2/78.3

Table 2: Performance analysis of our model and its ablations on the dev set.

Dev Set EM Dev Set F1

Basic C2Q attention 66.4 75.9
No char embedding 65.2 75.4
Independent start/end selection 67.0 76.5
Our Model (single) 67.8 71.5

than the single model implementation of original BiDAF, possibly due to our test time span selection
strategy and our different output layer.

4.3.1 Ablation Analysis

Table 2 shows ablation analysis results of our model when the hyperparameters described in section
4.2 are used. To evaluate bi-directional attention performance, we replace it with the basic C2Q
attention layer we used in the baseline. Having attention flow in both ways improves the F1 and
EM scores by approximately 2.5%. Removing character embedding layer from our model results
in a decrease in EM and F1 scores by 2.6% and 2.1%, respectively. It is mainly because char-level
representations can handle out-of-vocabulary (OOV) words better. Finally, we change our smart
test time prediction strategy to taking the argmax over start and end distributions independently,
similar to the baseline. This approach decreases the performance by approximately 1%, showing the
importance of smarter span selection at test time.

4.3.2 Attention and Prediction Analysis

Query-to-context (Q2C) attention is a key component in answering the query, since it shows which
context words have the closest similarity to the query words. We show the Q2C attention matrix
in Figure 3a. Our attention mechanism successfully captures the most critical components of the
question, ’acl’, ’career’ and ’thomas’, in the context. We also show the start and end probability
distributions in Figure 3b. Our model very confidently places the start and end locations to the
correct answer ’three’, indicated by a single bright yellow column in the probability vector.

Context-to-query (C2Q) attention signifies which query words are the most relevant to each context
word. We list the 3 most relevant context words for each query word in Figure 5. We can see that
our attention mechanism works well from the following examples: ’suffered’, ’broken’ and ’tears’
attend to the question word ’injuries’ the most. Quantitative context words like ’three’, *major’ and
’11-year’ attend the question word 'many’ the most.

4.3.3 Error Analysis

We do error analysis on our model based on question type and answer length. Our model’s perfor-
mance decreases as the ground truth answer length increases. However, since 95% of the answers
in the dev set have a span shorter than 6 words, our overall performance is mainly affected by the
questions with short answers.

(a) Question to Context Attention s

carolina
suffered
setback
when
insisted
accurate

championship

(b) Start Probability

End Probability

game

] <
£ g 8
s e g
s g g
83 <

overcome
insisted
accurate

championship

Figure 3: (a) Question to Context attention for an example context, question pair. (b) Start and end
probability distributions for the same example.

Context to Question Attention

how to,to,a
many three, major, 11-year
ad adl, setback, bowl
injuries suffered, broken, tears
has still, already, major
thomas thomas, championship, this
davis davis, setback, carolina
had had, would, find
during in, in, turned
his s, his, bowl
career career, game, 11-year
7 prediction, , arm

career
broken

championship

Figure 4: Context to Question attention for an example context, question pair. For each question
word, top 3 context words with the highest attention are shown in red color.

We report our model’s performance for different question types in Table 4. In general, the model
performs better whenever the question has a shorter average answer length. The model particularly
excels at "when” questions with a %83.5 EM and %87.2 F1 score.

We show the model’s performance on ground truth answers of different lengths in Table 3. As we
increase the length of the answer, the scores get worse. EM score is zero for answers that are longer
than 15 words since we set the maximum answer length to 15.

We select some cases from the dev set where our model gives incorrect answers to analyze and
consider improvements. There are several types of common mistakes that our algorithm makes.
Most mistakes are due to imprecise boundaries in the prediction. In particular, the algorithm either
omits the first and/or the last few words of the true answer or it gives a longer answer than it should.
Although it’s hard to get rid of these problems completely, it might be helpful to implement more
sophisticated techniques for start and end location prediction.

Another very common problem is paying attention to the wrong region of the context, which is
illustrated by the example below and its corresponding Q2C attention plot in Figure 5.

0.19

t
i
t

o

the
panthers
used
the
san
jose
state
practice
facility
and
stayed
a
the
san
jose
marriott
the
broncos
practiced
stanford
university
and
stayed
a
the
santa
clara
marriott

Figure 5: Question to Context attention for a question that the model gives an incorrect answer.

Table 3: Model performance based on ground truth answer length in the dev set. Since we limit our
maximum answer length to 16, EM score for answer lengths greater than 16 is 0.

Answer Length EM/F1 #Questions

1-5 69.0/78.0 10068
6-10 47.5/70.0 436
11-16 23.0/549 61
16+ 0/56.6 5

Table 4: Model performance based on question type in the dev set

Question Type EM/F1 Avg. Answer Length #Questions

When 83.5/87.2 2.04 696
Who 77.1/82.8 243 1061
Which 68.7/76.6 242 454
How 68.3/78.6 242 1090
Where 63.7/76.2 2.68 433
What 62.9/74.0 2.96 4753
Why 43.7/69.1 6.31 151

Question: At what university’s facility did the Panthers practice?
Context: The Panthers used the San Jose State practice facility and stayed at the San Jose Marriott.
The Broncos practiced at Stanford University and stayed at the Santa Clara Marriott.

Although model pays significant attention to “practice” in the ”San Jose practice facility”, it fails
to capture “facility” in the context. Since “Stanford University” has “practiced” coming before it
in the context, model pays a lot of unnecessary attention to “university”. In the end, it predicts
”Stanford University” instead of the correct answer ”San Jose State”. These mistakes could be
resolved by adding more layers while computing query-to-context and context-to-query attentions.
Our model also makes mistakes that are much less common such as paraphrasing problems and
syntactic complications.

5 Conclusion

In this paper, we implement BiDAF network that models query-aware representations of the context
paragraph without early summarization. We make modifications in the modeling layer and in the
span selection strategy. Our experiments demonstrate that our model achieves the state-of-the-art
results in SQuAD dataset. We provide ablation analyses to show the functionality and the importance
of each module in our model. Our visualizations for the attention mechanism and for the start and
end probability distributions give us better insight on how our model works. Our analyses based on
question types and answer lengths demonstrate in which cases our model makes mistakes. Future
work could involve building a deeper network for the attention component to resolve issues with
paying attention to the wrong region of the context paragraph. In addition, implementing different
methods for start and end location prediction such as the one in Dynamic Chunk Reader could help
increase the performance.

References
[1] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[2] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[3] Pranav Rajpurkar. The stanford question answering dataset. https://rajpurkar.
github.io/SQuAD-explorer/. [Online; accessed 20-March-2018].

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. CoRR, abs/1409.0473, 2014.

[5] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for ques-
tion answering. CoRR, abs/1611.01604, 2016.

[6] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching
networks for reading comprehension and question answering. In ACL, 2017.

[7] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer
open-domain questions. CoRR, abs/1704.00051, 2017.

[8] Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer pointer.
CoRR, abs/1608.07905, 2016.

[9] Yang Yu, Wei Zhang, Kazi Saidul Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. End-to-end
reading comprehension with dynamic answer chunk ranking. CoRR, abs/1610.09996, 2016.

[10] Yoon Kim. Convolutional neural networks for sentence classification. CoRR, abs/1408.5882,
2014.

[11] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. Dropout: A simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1):1929-1958, 2014.

