R-Net with Multiplicative Attention

Pierce Freeman Rooz Mahdavian
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
piercef@stanford.edu rooz@stanford.edu

Abstract

The R-Net model, originally published by Microsoft, is one of the highest per-
forming models measured against the SQUAD dataset. Various permutations of
the original architecture (both single and ensemble) remain as top EM/F1 scores
for prediction accuracy. Our model extends the original R-Net implementation
with multiplicative attention instead of additive attention, which achieves compa-
rable results in far less training time. We also enrich the current literature with a
thorough analysis of our design choices.

1 Introduction

The SQUAD challenge is a well-defined supervised classification problem. It bundles a pair of
100,000 Wikipedia entries with questions asking about the original paragraph. When the set was
constructed, crowd-sourcing was used to annotate the answers. These individuals were presented
the passage, the question, and allowed to select a span of text to form an answer. Crucially, this span
must come from the paragraph itself. A sample SQUAD entry is included below -

What is the Manueline

Traditional architecture is distinctive and include style also known as?
the Manueline, also known as Portuguese late Question

Gothic, a sumptuous, composite Portuguese style
of architectural ornamentation of the first decades

of the 16th century. Portuguese late Gothic

Answer
Context

Figure 1: Sample of a SQUAD pairing

By defining the problem in this way, SQUAD presents a proxy to test a machine’s ability to under-
stand unstructured content. It’s a subset of more general reading compression, where a party can
read a passage and respond to a question in freetext form. This sequence-to-sequence task remains
one of the pinnacles of machine learning research, but due to its unstructured nature it’s difficult to
model adequately. The power of SQUAD rests in the answer span residing in the input passage. The
task reduces to predicting the start and end tokens of the answer.

We extend the research done by Microsoft Research Asia in their R-Net: Machine Reading Com-
prehension with Self Matching Networks.|[1] A core part of their implementation relied on the Gated
Attention Unit, which adds additive attention with a localized gate to vanilla GRUs. This gate allows
the model to selectively ignore input information at each time-step. Within our model, we replace
the additive attention with a multiplicative attention. We also split the intertwined GRU into its
own layer, which removes a recursive dependency. This yields similar performance while greatly
reducing memory complexity and training time.

2 Background

2.1 Attention Methods

Within Attention is All You Need, Vaswani et al. propose a multiplicative attention that has better
performance over previous methods.[2] They define the “attention” tensor as having keys and values
K,V that can be different dimensions. The query () interacts with these keys to create the attention
distribution, and the actual weighted average is computed over V. Whereas additive attention doesn’t
allow for a direct interplay between the query and the attended tensor, directly applying a dot product
can allow for a richer relationship to be learned. This creates a distribution for a given query. They
explicitly define this relationship to be -

QK"
Vi

They also propose a permutation of this model, where they linearly weighted the query, keys, and
values. This increased the predictive power of their sampled models -

Attention(Q, K, V') = softmax(W (1)

Attention(QWZ-Q JKWE vy

2.2 Stable Dropout

Gal, et al. introduce an interpretation of RNN dropout with a Bayesian justification.[3]] Traditionally,
a deep RNN with multiple layers uses a different dropout mask for each layer and timestep. When
applied in a RNN of depth d = D to a sequence of length ¢ = T, this results in DT separate dropout
masks. For a given hidden unit &, we define this behavior as follows -

Dropout ,;, = Uniform|0, 1]

Intuitively, this approach could negatively impact training and inference because the model is ig-
noring different information on each time step. Indeed, Gal, et al. similarly found that this dropout
setup is unstable when compared to other techniques. Within their variational RNN, they use the
same mask for every layer. The output of the first RNN is masked identically on every timestep, as
is the second, and so on. The dropout mask thus becomes -

Dropout ;, = Uniform|0, 1] (2)

3 Approach

3.1 Original R-Net Architecture

The original R-Net paper makes heavy use of attention modules with bidirectional RNNs. These
RNNs have natural motivation because they can iterate over single-dimensional sequence data, like
passages of text. Indeed, when RNNs forward propagate they roughly approximate rightward read-
ing like English speakers do. R-Net makes use of bidirectional RNNs to read forward and back-
wards, which allows each timestep to have a better sense of surrounding context.

The original authors use additive attention, which we can generalize as a non-linearity applied to a
group of vectors (where V' includes the query and attention vectors).

%
Attention(V) = v” tanh(z W;V;) 3)

If we have hidden size d;, and V' vector ¢ is of dimensionality dy,, then the weight matrices are of
size: W : [dp, dv;].

We describe the forward propagation of this network as follows, following the notation of the origi-
nal paper. We have also included diagrams of our own model, which should be similar to the original
but may vary in specific details.

encoder layer

m queston representation

passage representation

question

. word embeddings

passage character embeddings

Figure 2: Encoder Layer

Define a question QQ = {th }m | and passage P = {wf}? ;. For each word w;, we have the
associated Glove word-embedding e; and character-level embedding c;. For each question and
passage in turn, we concatenate these word and character representations. The encoder layer runs
these two values through a vanilla Bidirectional GRU. These hidden layers now incorporate some
local context of neighboring words.

th — BIRNNQ (UtQ_p [6?7 CtQ])
uP = BiRNNp(ul |, [eF, cF))

question-passage attention layer

5 cd

question representation Gated
RNN
question-aware
passage representation

passage representation

Figure 3: Question-Passage Attention Layer

Once we have the separate encoded representations, each word of the passage attends to the entire
question to create an attention distribution. This tensor is then then piped through an RNN. We can
motivate this choice by recognizing that most questions allude to a portion of the text, using similar
word choice. If a passage word is also mentioned in the question, it may be more likely to surround
the answer span. This ‘sentence-pair’ representation {v{ }7_, was first proposed by Rocktaschel et
al. R-Net uses this basic paradigm, with the additional improvements of Wang et al. These
two advances result in the following RNN -

vP = BiRNN(v ;, #[ul, ¢;]) @

53 = Attention([uj—’?, ug ,vi]) ©)

t_ exp(sj)
Z;n:1 exp(sé)

m
ct = E aﬁu?
i=1

£

Here v7 isa (1, dhiaden] vector, and the weights W are [dhidden, dinput]. Additionally, the R-Net authors

also define x[ul’, ¢;] to be a gated attention unit -

g+ = sigmoid(TV, [uf,ct])

*[Uf» Ct] =0t * [Uf, Ct] (6)

We recognize that this definition is recursive. It expects c; to be passed to every timestep, but the
c; computation itself relies on the previous timestep’s hidden state v/ ;. It’s therefore impossible
to calculate a complete c; prior to running this BIRNN. Instead, it proved useful to instead write a
replacement to the GRU that can calculate this attention distribute during its BIRNN propagation

A full vectorization of this new GRU requires careful attention to the shape of higher dimensional
tensors. More specifically, at each timestep ¢ we must accept a passage sequence u) = [batch_size,
embedding_size] and attend to the question embedding u® = [batch_size, question_length, embed-
ding_size].

a=u; (W,)"

b =ik, jmk — jmi: W&, u®
Where the second quantity is expressed in Einstein summation notation. W2 and WuQ are of size

[hidden_size, embedding_size]. The full attention tensor can then be computed as follows (making
use of broadcasting along the third dimension) -

¢ = tanh(a +b)

st =ik, jmk — jmi 0T ¢

Where v = [1, hidden_size]. This produces a final output tensor of st = [batch_size, hidden_size],
which acts as the matrix of attention scores for each attended-to timestep.

passage-passage attention layer

Gated
RNN

question-aware question and passage-aware
passage representation passage representation

Figure 4: Passage-Passage Attention Layer

As a result of being fed through a RNN, the resulting passage has some ingrained notion of its
context. However, due to vanishing gradients, this context is limited to around five words around
each timestep ¢. Therefore we’re motivated to create a contextually aware passage output. We
facilitate this by having each word of the passage attend to the entire passage. We follow the same
GRU definition from in equations 4-6.

A question
output layer
- Attention = .

start

m position
. Attention .
question and passage-aware

end
assage representation
Passage fepressmial position

question representation

Figure 5: Pointer Network Layer

We define our pointer network generally as a layer that accepts a vector input, then outputs a softmax
probability a over all the words of the passage. When run with different inputs, the argmax of this
probability defines the ’start’ and ’end’ tokens of the span respectively p. This output layer is defined
as an attention over some input / as such.

S = Attention([hf, }AL])

o — exp(s;)
t o exp(sy)

n

§ t1. P

C; = azhl
=1

p = argmax(ay, ..., ay)

Now we consider the values h that are inputted into this output layer. The “start” input is an attention
distribution r? over the question. Heuristically, this serves to initialize the pointer network with a
notion of the answer we’re looking for.

s; = Attention([UJQ, V)

exp(s;)
0= S
Zj:l exp(s;)

re = Zaiu? @)
i=1

Here, V% is a learned vector which is applied for every batch. The “end” input is generated by
passing 7 and its attended-to ¢ through a single GRU cell -

b = GRU(r%, ¢,0)

3.2 Character Embeddings

The method of generating character embeddings is not covered within the original R-Net paper.
Since there’s no industry standard method to generate character embeddings, we followed the

methodology of Woolf et al. [|6]

For every character 4, we find all words in our corpus that contain i. Denote this set . We then
refer to the embeddings of each w; € W, such that we have embeddings e;. With the intuition that
characters have some semantic influence on word usage (eg. verbs or tenses) we define a character

embedding as the average of word vectors. Thus ¢; = ﬁ ZI/V €;.

3.3 GRU Cell Bottleneck

During the unrolling of our custom GRU cells defined in equation 4, we have to calculate attention
distributions during every timestep. This process can’t be parallelized due to previous hidden state
dependencies. It therefore poses a significant computational bottleneck during the training of our
model.

Instead of performing this logic within the GRU, we instead propose a slight permutation of the

model architecture. We perform the attention prior to passing the result to the BIRNN, so we modify

equation 4 from s’ = Attention([u?, uf vf |]) into -

55. = Attention([u;-’?, Uf 1)

This decision does lose the ability to blend the passage context within the current attention store.
However, we justify this choice on a few grounds. One, the post-attention RNN should provide
some of this context awareness due to the GRU’s internal weighting. Two, empirically we found
this adjustment to only marginally affect performance while significantly decreasing training time.

3.4 Multiplicative Attention

We present an alternative to additive attention, using a non-linear multiplicative attention similar to
that proposed by Vaswani et al. We take the dot product of two weighted vectors - V; and V5 to
substitute for our equation 3.

Attention(V') = tanh(W1V; - Wa %)

This approach only supports up to two component vectors - usually one for the keys and one for the
query. However, once we make the modeling choice described in section 3.3, all our attention layers
fulfill this requirement.

4 Experiments

A majority of our initial experiments were focused on getting the R-Net model implementation as
accurate as possible. In their paper, Microsoft publishes results with 71.1 M and 79F'1. Our best
results were 61.82F'1 and 46.71E M on a dev set with a single ground truth label.

4.1 Loss Curves

Through tens of separate trials, some with sweeping architectural challenges, we found that our
model faced a similar loss function and F1 curves. As such, it seems there may be an illusive
upstream issue that we were unable to adequately discover at the time of submission.

9.00

8.00 N

6.00

1.000k 2000k 3000k 4.000k 5000k 6000« 7000k 8000k 9000k 1000k 11.00k 12.00k 13.00k

Figure 6: Training Loss Curves

4.2 Sequence Lengths

Our model pads questions and passages to a predefined length for their type. Larger sequence lengths
require more GPU space to store in memory, so they limit our batch size and hidden layers. As such,
it makes sense to prune this dataset if we are able to retain the majority of information.

We ran a manual analysis of our dataset to find where the text lengths appear to begin their long-tail.
For questions, we found this was after character 20. For passages, we found this was after character
300. We discarded training examples longer than these values.

Question Distribution Passage Distribution
30000 120000

20500 90000
15000 60000

7500 30000

0 0
2-1 67 11-12 16-17 21-22 26-27 31-32 36-37 60-61 0-100 200-300 400-500 600-700

Figure 7: Length distributions in dataset

4.3 Trainable Character Embeddings

As part of diagnosing our model loss function, we disabled the training of character embeddings,
relying on their default values. As described in section 3.2, these are averaged vectors over matching
Glove words. Disabling training for this layer seemed to positively increase F1 and EM.

Table 1: Trainable Character Embeddings

F1 @ iteration 2.5k EM @ iteration 2.5k
Trainable 0.32 0.23
Non-Trainable 0.47 0.33

4.4 Multiplicative Attention

We note that the multiplicative layer achieves slightly worse performance compared to the vanilla
additive layer. With that said, in some constrained cases it is worth the trade-off. First, it has a lower
memory footprint. This allowed us to simultaneously increase the batch size and hidden layer size,
while still operating on only one GPU. Second, matrix multiplications can be optimized much faster
than additions. This can decrease training time by a significant margin.

Table 2: Multiplicative Attention

F1 @ iteration 6.2k EM @ iteration 6.2k
Additive 0.50 0.37
Multiplicative 0.47 0.34

4.5 CUDA RNNs

We also attempted to rewrite our RNN layer using the CudnnGRU, a highly optimized implementa-
tion of the GRU that works on Nvidia’s GPUs.

The speed optimization that CUDA brings is nearly a factor of 4.5. That said, when combined with
the multiplicative attention layer it appears to suffer in performance rather significantly.

Table 3: Cuda RNN Runtime

Execution Time Dev F1 @ 8.2k Dev EM @ 8.2k
Vanilla GRU + Gated Attention 12h 4min 0.57 043
Cuda GRU + Attention Layer 2hr 41min 0.48 0.34

4.6 Attention Analysis

We have visualized the attention distributions for each of the layers in our model discussed in
Section 3.1 in Figure 8 below, for a successful example question/answer pair from the dev set.

Within each distribution, we highlight all words which have a probability within the highest
relative order of magnitude (where the strength of the highlight reflects the relative probability mass
within this order of magnitude), and annotate them with the corresponding probability.

For the passage-question layer and the passage-passage layer, the distributions are provided
specifically for the two words in the ground-truth answer within the passage (over the question and
passage, respectively); the model accurately predicts the ground-truth span for this example, which
makes it likely the information provided in the attention layers for the two words in the answer span
would be relevant. Note that that each distribution was computed with multiplicative attention (as
discussed in Section 4.2).

Interestingly, we see that, within the passage-question layer, the token “Kevin” from the
question matches directly with the token “announcer” from the question, and the following token
”Harlan” from the question matches directly with the token "Who” from the question. Together,
we interpret this to enrich the passage representation at these time-steps with information about the
nature of the question as one of identity ("Who” matching to ”Harlan”) and role ("Kevin” matching
to “announcer”). The conjunction of these two may have been crucial in the disambiguation
between the multitude of names and roles within the passage, as in the pointer-output layer we can
see that the start distribution almost selected “Esiason” instead of ”Kevin”, and the end distribution
almost selected “Fouts” instead of "Harlan”. The distributions within the passage-passage layer are
less easily interpretable, but appear to integrate the context surrounding both tokens.

5 Conclusion

We have demonstrated that CUDA RNNs and independent attention gates show promise to signifi-
cantly improve training times of R-Net. As part of this process, we also robustly analyzed the design
choices and enumerated some reasonable assumptions that weren’t specified in the original design.

We hope this analysis of R-Net and supplementary choices can enable further experimentation
within this model. Despite the potential implementation or hyperparameter choice that is keep-
ing our F1/EM scores lower than the original paper, we have shown R-Net to be relatively robust to
differences in modeling choices. This proves promising for the overall resilience of the underling
attention dynamics as they are applied to other domains.

4.6 Attention Analysis

passage question
Westwood one will carry the Who is the play-by-play

game throughout north america,
announcer for the game ?
with Kevin Harlan as play-by-play
announcer, Boomer Esiason and ground— truth answer
Dan Fouts as color analysts, and)
James Lofton and Mark Malone Kevin Harlan
as sideline reporters. Jim Gray
will anchor the pre-game and

halftime coverage.
passage-question attention

Westwood one will ca Who is the plaY'bY'PlaY
game thrW announcer for the game ?

with Kevin Harlan as play<by-play 100

announcer, Boomer Esiason a
1.00
Dan Fouts as color analysts, and
James Lofton and Mark Malone

as sideline reporters. Jim Gray announcer for the game ?

Who is the play-by-play

will anchor the pre-game and

halftime coverage.

passage-passage attention 0434 0017 0123 0318

Westwood one will ¢ Westwood one will carry the ...
game thr out north america,

with Kevin Harlan as play-by= R 2o

; ... game throughout north
announcer, Boomer Esiason and B) i
0048 america, with Kevin Harlan as
Dan Fouts as color analysts, and

James Lofton and Mark Malone play-byeplayannounger a5

ideli : 040 sideline reporters. Jim Gray will
as sideline reporters. Jim Gray 0.040 P J y

vwill amdhiorthe pre- pameani anchor the pre-game and halftime

coverage. A3

halftime coverage.

start-pointer

| 0754
T -+ ... with Kevin Harlan as play-by-
play announcer, Boomer

0128 Esiason ...

end-pointer
2 0758
A S ~ ... with Kevin Harlan as play-by-
play announcer, Boomer Esiason
and Dan Fouts ... 0131

Figure 8: Attention Distributions on a Successful Prediction

10

6 References

(1]
(2]

(3]
(4]
(5]

(6]

N. L. C. G. Microsoft Research Asia, “R-net: Machine reading comprehension with self-
matching networks,”

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and L
Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Sys-
tems, 2017, pp. 6000-6010.

Y. Gal and Z. Ghahramani, “A theoretically grounded application of dropout in recurrent neural
networks,” in Advances in neural information processing systems, 2016, pp. 1019-1027.

T. Rocktischel, E. Grefenstette, K. M. Hermann, T. Kocisky, and P. Blunsom, “Reasoning
about entailment with neural attention,” arXiv preprint arXiv:1509.06664, 2015.

W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “Gated self-matching networks for reading
comprehension and question answering,” in Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, 2017, pp. 189-
198.

Woolf, Pretrained character embeddings for deep learning and automatic text generation. [On-
line]. Available: http://minimaxir.com/2017/04/char—-embeddings/.

