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Abstract

In this CS224N Winter 2018 final project, several variations of encoder, attention,
and output layer are implemented for an end-to-end question answering system.
Bidirectional attention flow (BiDAF) outperforms other models on the Stanford
question answering dataset, with a single BIDAF model achieving a dev F1 of
74.37% and a test F1 of 74.72%, and an ensemble achieving a test F1 of 76.02%.

1 Introduction

Reading comprehension is a daily task for human beings and one of the fundamental ways to com-
municate. Machine Reading Comprehension (MRC) researches aim to build a intelligence system
that can comprehend written language, which can see wide applications in many real-world scenar-
i0s. One crucial, extrinsic task to evaluate MRC systems is through question answering (QA), which
is a real-world task that requires both natural language understanding and real world knowledge.

QA tasks could be formulated in different ways, for example, in MCTest [1] each task is a tuple
of context, question, and candidate answers. The goal is to identify the correct answer from the
given candidates. In the present project, we will implement our models for the Stanford Question
Answering Dataset (SQuAD) [2], where each task is a tuple of {(c, ¢, a). Given the context ¢ and a
query ¢, the system needs to identify a span in c that constitutes an answer a for q.

The present project is an attempt to build an end-to-end neural system for the QA tasks in SQuAD.
Several variations are implemented and bi-directional attention flow was found to give the best
performance on dev set. The system will be consisted of three major modules: encoder that learns
the representation of context and query, an attention mechanism that results in refined, query-aware
context representations, and an output layer that predicts the start and the end position of the answer
span. I have experimented with several variations for these three major layers.

2 Related Work

In Jan 2018, the best model has already achieved an F1 of 89.281% and an Exact Match (EM) of
82.482% on SQuAD which was released by Rajpurkar et al [2] in 2016. Below I will summarize
some major advancements in terms of the three major layers, i.e., encoder, attention, and output
layer.

Encoder Layer This is the layer to learn context and question representations. Typically, we first
start with word embedding, e.g., Glove [3, 4, 5], or concatenated with character embeddings [6,
7], which helps to address out-of-vocabulary (OOV) words. Other features may also be helpful,
e.g., part-of-speech tags, named entity recognition tags, etc. [5], or even structural embedding of
syntactic trees [8]. These embeddings are then passed to recurrent neural network (RNN) [5] or
multilayer Highway Network [7, 9].



Attention Mechanism Attention is crucial in generating query-aware context representations. There
are variations of attention mechanism, e.g., bi-directional attention flow (BiDAF) [7], Co-attention
[4], self-matching in R-Net [10], fine-grained gating mechanism that dynamically combine word-
level and character-level representations [11], gated-attention mechanism [12], bilateral multi-
perspective matching [13].

Output Layer Output layer predicts the answer span, typically through softmax. In the one hop
approach, predictions are made once, e.g., BIDAF [7], Match-LSTM and Answer Pointer Network
[14], or dynamic chunk reader [15]. In the multi-hop approach, predictions of the start position and
the end position are iterated several times, e.g., [4, 9, 16], and this helps the model to move away
from local minima.

Recent advancements have also incorporated more sophisticated modules, for example, a “memory-
like” module as in reinforced mnemonic reader [17].

3 Architecture

In this project, several variations of model architecture has been implemented, and BiDAF [7] is
found to have the best performance on dev set. I will start with a description of BiDAF and then
other variations. Note that baseline from default project handout is also included in the experiment
but not described in details here.

3.1 Encoder Layer

GloVe embeddings {z;}Y ,,z; € R? for context and {y; }jj‘il, y; € R? for questions are first
passed to a bidirectional RNN to obtain hidden states for contexts ¢’s and questions g’s. RNN
helps to capture interaction between words in the paragraph. In Baseline, the RNN is a single layer
bidirectional GRU while for BiDAF, I chose two-layer bidirectional LSTM.

3.2 Attention Layer

Attention layer refines the hidden states of context and questions to allow them to be aware of each
other. Baseline has implemented a simple attention mechanism.

3.2.1 BiDAF [7]

First, a similarity matrix S € RY*M is computed, where each S;; is a similarity score for each
pair (¢;,q;):
T
Sij = wymlci,q;,ci0q;] €R
where wgyy, is a trainable weight vector.

Next, context-to-question attention is computed as a; = Zjl\il a;-qj € R?*!, where of =

softmax(S;.) € RM . Question-to-context attention is computed as ¢/ = Zf;l Bic; € R*", where
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B = softmax(m) € RY and m; = max; S;; € R.
The final learned representation for each context token ¢ is
b, = [c;;ai¢ci0a55¢,0c ] € R Vie {l1,...,N}
where a; and ¢; o a; incorporate question-aware context representation, and ¢; o ¢’ captures the
information of interaction of context and context-aware question representations.

3.2.2 Coattention [4]

The implementation is based on the default project handout. The key is to compute context-to-

question attention {a;}}¥, for each context token i and question-to-context attention {di}jlvil for
M+1

=1 Ol;-dj €

’RQh, for each context token . Concatenation of first-level and second-level attention outputs i.e.,

{[si;@;]}_, are then passed to a biLSTM to obtain the attention output {u;}~ ,, which is then

concatenated with context hidden states {c; } ¥ ;.

each question token j. On top of this, compute second-level attention as s; =



3.2.3 Self-attention [10]

Self-attention is another self-matching attention layer that could be applied on top of other attention
outputs. Given a sequence of attention outputs v1, ..., vy € R', the attention output is

{h1,...,hn} =biRNN({[v1;a1],...,[vN;an]})
where {ai}fil are self-matching (i.e., between v’s) attention scores.

3.3 Output Layer

This is the layer where we generate the final predictions for the start and the end position for the
answer span. Baseline has a simple softmax layer based on a fully-connected layer.

3.3.1 BiDAF Modeling and Output Layer
In the notation of BiDAF paper [7], the blended representations {b;}2Y | is denoted as G, which are
passed to a two-layer biLSTM to obtain M € R2¢*N_ Then the start position is predicted as

p' = softmax(w_: [G; M)
To predict the end position, first pass M to another single layer biLSTM to obtain M? € RN,
then end position is predicted as

p® = softmax (w: [G; M?])

3.3.2 Answer Pointer Layer

The main idea is to condition end position prediction on the start position prediction. This imple-
mentation is similar but slightly modified to that in R-Net [10] and Match-LSTM [14]. First, the
probability of each context token ¢ being the start position is predicted as

p} = softmax(v’ tanh(Wpb; + Wphg))
and the probability of each context token ¢ being the end position is predicted as

p? = softmax(v’ tanh(Wpb; + Wph,))
where hy is initialized as hg = Zjl\il Bjq; and B; = softmax(vg T tanh(Wyq; + bg)). On the
other hand, h; = RNN(hy, Zf;l pib;), where b is the blended representation.

3.3.3 Other Variations

In self-attention and co-attention, we could choose multilayer biLSTM instead of a single layer one,
or we could stack two fully-connected layer instead of one in the output layer.

3.3.4 Adjustment

Since in the training set, about 98.98% of context-question pairs have answer span less than 20,
the start index [**" and the end index [ are predicted as the pair (i,7) with i < j < i + 19 that
maximizes psranpj-“d. This constraint gives an improvement of 2-5 points in F1.

4 Experiments

I have experimented with several variations of different layers. I did not have the resource/time to
fully examine each possible combination, and the goal is mainly to search for the architecture and
hyperparameters that work the best, which turns out to be BiDAF based on my implementation. I
will focus on BiDAF first and then present results on other variations.

4.1 Dataset

Models are evaluated on SQuAD v1.1, which has 23,215 paragraphs from 536 articles on Wikipedia
covering a wide range of topics. In total there are 107,785 questions. The dataset has been split into
a 80% training set, a 10% dev set, and a 10% hidden test set.



4.2 Implementation Details

For BiDAF, hidden size is 120 and dropout is 0.20, which is applied to all RNN layers and fully
connected layers. Word embedding is GloVe 100d, batch size is 100, context length is 320 since in
training set 98.88% of context-question pairs’ context length are less than 320, and question length
is 30, which covers 99.93% cases in the training set. Optimizer is Adam with learning rate of 0.001,
and the model was trained for 16.5k iterations. Hyperparameters are tuned separately for other
variations of model architectures but shared hyperparameters are in general similar to BiDAF, e.g.,
context length, question length, batch size, and training iterations.

4.3 Model Evaluation

Exact Match. A binary measure of whether the system output matches the ground truth answer
exactly. Taken to be the maximum across three human answers, and then aggregated across all
document-question pairs.

F1 score. The harmonic mean of precision and recall, and taken to be the maximum across three
human answers, and then aggregated across all document-question pairs.

4.4 Results

This section starts with an overall comparison among different variations, and then a deep dive into
BiDAF and other model architectures. Detailed analysis of loss examples are also included in the
supplementary materials.

44.1 BiDAF

Results Table 1 presents the performance comparison across main model architectures and varia-
tions implemented in this project. Each variation has been tuned separately.

The main observations are that post hoc adjustment (i.e., imposing the constraint start_pos <
end_pos < start_pos + 19) has significantly boosted the performance for baseline and for other
model variations. Replacing baseline output layer with answer pointer network does not appear to
improve the performance that much, and will be discussed in more details later. Self-attention on top
of baseline brings huge improvement in F1 and EM. Combing self-attention and coattention gives
an even better performance than baseline plus self-attention. On the other hand, a better tuned coat-
tention outperforms the hybrid of self-attention and coattention. These variations will be discussed
in more details later.

Overall, BiDAF outperforms other variations based on my specific implementation, with a single
model achieving 74.72% test F1, and an ensemble achieving 76.02% test F1. In the following
section, we will take a closer look at BiDAF.

Table 1: Results on the SQuAD dev and test set

Dev Set Test Set
EM F1 EM F1

Baseline w/o any start_position < end_position adjustment 34.68 43.69 - -

Baseline 4041 51.31 - -
Baseline + Answer Pointer Network 41.11 51.72 - -
Baseline + Self-Attention 53.93 6542 - -
Coattention + Self-Attention 56.52 68.00 - -
Coattention + 3-layer biLSTM in encoder layer 58.39 69.70 - -
BiDAF (single) 64.27 7437 64.51 74.72
BiDAF (ensemble) 64.84 7493 66.27 76.02

Effect of Dropout The effect of different dropout probabilities are explored. As shown in Figure 1,
dropout probability has an direct effect on the training F1, that is, with lower dropout probability,
the training F1 is higher. On the other hand, dropout is effective in preventing overfitting: when



there is no dropout, the model quickly overfits at around 4k iterations and dev F1 starts to drop after
that. On the other hand, the difference in a dropout probability of 0.15 or 0.20 does not appear to be
very notable. Note that F1 in Figure 1 is based on tensorboard and hence slightly different from the
final dev F1.
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Figure 1: BiDAF with different dropout probabilities

Ablations The impact of different modules in BiDAF are explored; however, the experiments are by
no means comprehensive due to long model training time.

By no proper bidirectional attention, it means implementing the attention in BiDAF as b; =
[¢i; ai; €] rather than b; = [¢;;a4;¢; © a;;¢; o ¢']. By no modeling layer, it means using the
baseline output layer rather than the modeling layer in BIDAF which involves multilayer RNN.

As shown in Table 2, modeling layer plays a critical role in the system’s performance. Even when
attentions are implemented properly, the system performance will be suboptimal without the mod-
eling layer. One intuition is that the modeling layer allows to capture more complicated patterns of
interactions via applying multilayer RNN on the blended representation (i.e., concatenation of con-
text hidden states and attention outputs). An extra layer of RNN when predicting the end position
also gives the model extra complexity to adjust its start and end position predictions.

On the other hand, the ‘proper’ bidirectional attention is critical since it combines the information
from context hidden states and context-to-question attentions, as well as capturing the interaction
between context and context-aware question representations.

Table 2: Ablations of BiDAF on the dev set

Dev Set
EM F1
No proper bidirectional attention, no modeling layer 41.93 (-22.34) 53.21 (-21.16)
No modeling layer 4421 (-20.06) 55.87 (-18.50)
BiDAF 64.27 74.37

Other Hyperparameter Tuning Tuning of other hyperparameters is also attempted (e.g., different
hidden size, different word embedding dimensionality, or different number of RNN layers for the
encoder), but overall the change in performance is less notable, except that some variations may
slow down the training process due to more parameters, or even cause GPU memory issues.

Ensemble We’ve tested an ensemble of five BIDAF models with slightly different hyperparameters.
The ensemble is based on majority voting and it gives slight boost in performance. Ideally, if time
allows, an ensemble of more BiDAF with different runs should work better.

Performance by Context/Question Type In this section, BIDAF performance are examined on
slices of different document-question-answer attributes. As shown in Figure 2, F1 and EM tend to
be lower for context length longer than 320, which is the maximum context length in our model. On



the other hand, F1 is relatively stable across different question length and there are only a few data
points beyond question longer than 30 words.

Answer length is calculated as the average answer length of three ground truth answers. For answer
length, the system performance appears to be worse for longer answers, which could be more com-
plicated and hard to predict accurately. In addition, beyond answer length of 20, f1 and exact match
are either zero or close to zero, which is expected due to the constraint on the answer length. Note
that there is an outlier having 100% EM for an average answer length of 23, but this is possible since
for this question, the three ground truth answers are of length 16, 26, 28, hence not all of them are
greater than the cut-off 20.

Figure 2 shows that BiDAF predicts the most accurate answer spans for ‘when’ questions, and per-
forms the worst on ‘why’ questions, which could involve more logical inductions. Another plausible
reason is that we have less ‘why’ questions. It will be discussed in more details in the error analysis
section and in the error analysis supplementary materials.
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Figure 2: BiDAF F1/EM by context length, question length, answer length, and question type

Error Analysis More details of the error analysis and loss examples can be found in the error
analysis supplementary materials. The main observation in looking through loss examples are
that 1) the system in general is able to identify a span in the context paragraphs that is at least
close to where the correct answer is, which indicates that the attention mechanism is effective; 2)
even though the system may identify a span that is close to the true answer, it fails to be capable
of performing logical inductions: for example, when the relationship between the question and
the context requires logical induction but there are minimal overlapping words, it appears to be
difficult for the system to predict the right answer; for example, the question asks for the team with
‘most sacks’ in super bowl and the context only mentions the number of sacks for each team, and
the system has to infer what number of sacks is the ‘most sacks’; 3) the answer produced by the
system is sometimes informationally correct, but less readable compared with human answers due
to missing a few words that would make the answer reads more smoothly.



4.4.2 Other Variations

In this section, we will discuss experiment results for model architecture variations other than
BiDAF.

Answer Pointer Network Layer The key idea of answer pointer network is to condition the predic-
tion of end position on the predicted start position. However, when replacing baseline output layer
with my implementation of answer pointer network, it only improves very slightly upon baseline,
while increasing the number of parameters and slowing down the performance. Hence, this is not
pursued further given limited time frame for this project.

Variations of Self-Attention Self-attention is an extra layer applied to other attention outputs. When
combined with baseline, it significantly boosts the performance. Since co-attention is performing
better than baseline, I apply self-attention on top of co-attention, and the hybrid attention further
boosts the performance as shown in Table 1. On the other hand, imposing self-attention on top of
other attention mechanisms increase model size by a considerable amount, and frequently ran into
GPU memory issues.

Variations of Co-Attention In co-attention, the attention output is the concatenation of forward and
backward hidden states of the RNN, and hence, the attention output is two times the size of the
hidden state. As shown in Figure 3, one major finding is that increasing the attention output size (or
the hidden state size) may significantly boost the performance, which reaches a peak at round 1.2,
and stays at a plateau after that. Note that increasing the hidden state size slows down the training
and may cause GPU memory issues.

As in Table 3, other co-attention variations are experimented, e.g., replacing the single layer bidi-
rectional GRU in encoder layer with multilayer bidirectional LSTM, or replacing the single layer
bidirectional LSTM in the attention output with a two layer bidirectional LSTM, or adding another
fully-connected layer in the output layer. However, these variations do not give any significant
boosts in performance. With an extra fully-connected output layer, the performance is even worse
but perhaps due to insufficient tuning of hyperparameters.

It is worth noting that I have not fully replicated co-attention model as in the original paper, for
example, one major component missing is the dynamic part, i.e., the dynamic pointing decoder that
involves iterative reasoning and could be effective in avoiding local minima,
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Figure 3: Co-Attention with different attention output size

Table 3: Results on different variations of co-attention

Dev Set
EM F1
Co-attention 58.09 69.85
Co-attention + 3-layer biLSTM for encoder 58.39 69.70
Co-attention + 2-layer biLSTM for attention output  56.59 68.17
Co-attention + 2 fully-connected output layer 4271 54.09




5 Conclusion

In this project, based on the provided starter code, I have implemented several variations of end-to-
end systems on the SQuAD tasks. BiDAF outperforms other variations implemented in this project,
and a single model achieves 74.37% dev F1, 64.27% dev EM, 74.72% test F1, and 64.51% test
EM, with ensemble achieving 76.02% test F1, and 66.27% test EM. The detailed error analysis
(included in the supplementary material) shows that the system is in general able to identify
a span in the context paragraph that is close to the correct answer, but may make errors when it
requires more logical inductions to correctly answer the questions.

Disclaimer: even though I may use the same/similar model name as in their original papers, all of
these names only refer to my own specific implementation, which are likely partial implementations
rather than exact replications of the original papers, and if they do not perform well, it is likely my
own fault.
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