An Ensemble Model for SQuAD

Yuze He Priyanka Dwivedi
SUID: yuzehe SUID: pdwivedi
Stanford University Stanford University
yuzehe@stanford.edu pdwivedi@stanford.edu

Coadalab submission: pdwivedi

Abstract

Machine Comprehension is a daunting task, since it requires cross-encoding and
exchanging information between a context paragraph and a given query in order to
produce an answer span. Recently some powerful models have come closer to at-
taining human accuracy on the Stanford Question Answering (SQuAD) dataset
which consists of 100,000+ (context, question, answer) tuples extracted from
Wikipidia. In this project, we implemented two models R-NET and BiDAF on
the SQuAD dataset. We also experimented with replacing the RNN Encoder used
in baseline with a CNN encoder. In the end, we combined the predictions from our
best models to produce an ensemble model that further improves performance.

1 Introduction

Machine comprehension aims to understand a given context paragraph and predict the correct an-
swer for a corresponding query. An accurate execution of a machine comprehension task has many
important practical applications and therefore is an active area of research. The state-of-the art im-
plementation often utilizes the RNN model or its variants (GRU or LSTM) to encode the context and
the query. Attention mechanisms are useful in capturing the relationship between the context and the
query, producing a query-aware encoding for the context. GloVe word embeddings and character
embeddings are often used as model inputs.

In this project, we focused on two well performing SQuAD models - BiDAF and R-NET that have
quite different attention mechanisms. We also tried to implement a CNN based context and query
encoder. We combined predictions from R-NET and BiDAF to create an ensemble model that per-
forms better than either of the single models. The rest of this report is organized in multiple sections:
section 1 provides background and covers other related works; section 2 describes our modeling ap-
proach; section 3 covers the results from our experiments; we conclude in section 4.

1.1 Problem Definition

The objective in this project is to predict a span of words within the context paragraph that answers
a given question.

Formal definition: Given a context paragraph represented by a sequence of d-dimensional word
embeddings C' = ¢y, ca,...,cy € R? and a corresponding question represented by a sequence of
d-dimensional word embeddings Q = q1, g2, ..., qas € R%, predict a pair A = (asqr¢, AEng) € R?
which are the index of the starting and ending position of the answer within the context paragraph.
The SQuAD dataset further constrains answer A to be a continuous sub-span of context C. Answer A
often includes non-entities and can be much longer phrases. This setup challenges us to understand
and reason about both the question and passage in order to infer the answer.

1.2 Related work

In this assignment, we focused mainly on two of the top encoder-decoder architecture models on the
SQuADI[1] leaderboard. The first one we implemented is Bi-directional Attention Flow [5] which
uses a bi-directional attention flow between context and question to obtain query aware context rep-
resentation. It achieves an F1 score of 77.323 and EM score of 67.974 with a single model (81.525
and 73.744 with an ensemble). The second architecture is R-NET [2]. This model implements a
Gated RNN for question passage matching and for context self matching and uses a pointer network
for answer prediction. It achieves an F1 score of 86.536 and EM score of 79.901 with a single model
(88.493 and 82.650 with an ensemble) [3].

2 Approach

Our ensemble model is consists of four main layers: embedding layer, encoder layer, attention layer
and output layer. Each layer is described below.

2.1 Embeddings

The baseline model is implemented on Global Vectors for Word Representations (GloVe)[4], which
are a set of pre-trained word embeddings on aggregated global word-word co-occurrence statistics
from a corpus. We also tested a character level CNN module which can be used to deal with out
of vocabulary (OOV) words and capture subword information. In this module we first padded all
words to a fix length of 16 characters and then as described in [5] map each word to a vector space
using character level CNNs. We initialized a trainable character embedding matrix using random
initialization. As suggested in the project handout, we used a kernel size of 5 and filter depth of
100 to perform 1D convolutions. The resulting character level word embeddings is concatenated
with the pretrained Glove Embeddings to get a hybrid description for each word. The concatenation
of the character and word embedding vectors is passed through a two-layer Highway Network as
described in the BiDAF paper [5]. The outputs of the Highway Network are two matrices, one for
context and the other for query.

2.2 Context and Question Encoder

The baseline model uses the input from the previous embedding layer and implements a bi-
directional GRU (with shared weights) to create an encoded representation for the context and the
question. This encoding allows each word to become aware of words before and after it. Recently
CNNs have been used quite successfuly for text classification [6]. However we didn’t find any high
performing SQuAD model use a CNN based architecture. CNNs have an advantage of RNNs in
that they are faster and parallelizable. We tested building a CNN Encoder for context and query and
replacing it with a RNN Encoder. Our model is described below.

The CNN layer is implemented on the word embeddings from the previous layer. It consists of K
convolution steps each with an increasing kernal size from 2 to K+1 and a fixed filter size f. For
this experiment we chose a filter size f of 50 and K was 6. We performed 1D convolution, set stride
as 1 and used same padding to ensure output at each step is the same dimension as input. We ap-
plied non-linearity and dropout on the output of each convolution step and then passed the output
as the input to the next convolution step with a bigger kernal size. Finally the output from all the
convolution steps was concatenated to give a vector of the size of context or query and depth R/*K
CNNe s for text classification typical do maxpooling to create a single vector for each context. In this
case we wanted the final output to be per word instead of per context, hence we didn’t perform max
pooling.

The intuition behind this architecture was replicating the use of CNNs for text classification with
some modifications to better suite the task at hand. We used kernel sizes from 2-7 since our analysis
had shown that answer length is typically in this range. This allows each word to interact with words
in its immediate neighbourhood and also slightly far away. The filter size of 50 was chosen so that
the output dimension from CNN encoder was the same as from our RNN encoder.

2.3 Attention

The attention layer takes the encoded context and query output from the previous layer as input
and produces query-aware representations of the context words. Attention mechanisms attempt to
focus on the most relevant segments from the context with regard to the query. We have tested two
additional attention mechanism in this project.

2.3.1 Bi-Directional Attention Flow

The Bi-Directional Attention Flow (BiDAF) has both a context-to-query component as well as a
query-to-context component, providing additional information to the model. It does not summarize
the context or the question into a single fixed vector representation, instead attention is computed
for each time step which reduces early summarization. BiDAF is also theorized to create a division
of labor between the attention layer and modeling layer by its memory-less structure (i.e. at each
time step attention depends only on current inputs). Such structure may force the attention layer to
focus on learning the attention between the context and the question and leaves the task of learning
interactions among query-aware representations to the modeling layer.(See Figure 1)

Specifically, given context hidden states c;,cs,...,cxy € R?*" and question hidden states
q1,q2,...,qn € R?" from the embedding layer, construct a similarity matrix S € RY*M_ Each
element S;; € R is obtained such that S;; = w”'[c;; ¢;; ¢; o q;] where w € RS" is a weight vector
and o is element-wise product of two vectors. This similarity matrix S is used to create the weights
for both Context2Query attention and Query2Context attention.

Context2Query Attention: Context2Query attention focuses on question words that are most rele-
vant for each context word. The Context2Query is a weighted sum of the question word representa-
tions for every context word, where the weights are a;; = softmax(.S;.) € RM . Then Context2Query
isa; = Zjl\il Qa5 € R?h ;.

Query2Context Attention: On the other hand, Query2Context attention allocates more weight
to context words that correlate more with the most similar question word. For each example,
Query2Context is a weighted sum of the context word representations for each example. Let
B =softmax(maz; S;;) € RYN be the weights for Query2Context. Then, Query2Context is de-

fined as ¢ = Zf\;l Bic; € R?". The final blended attention representations for the context are:

bi = [ci;ai;¢i0a45¢ 0 c/] € R8,
The Modeling Layer: A modeling layer is inserted to learn the interaction among the query-aware
context word representations. A RNN model is used in this modeling layer.

Start End Query2Context
{ Softmax J
Output Layer ollel el lolle i. uy
iiliididiti
§m1 M2 My 2.1.‘. .‘.‘. Up
8 -J n‘ 9 ‘0 !3, Uy
Modeling Layer -
A W [] LU
91 92 gr

Context2Query

Attention Flow

Query2Context and Context2Query
Layer

Attention o] [e|[o} o1 e] uy

hy h, hy Uy Uy e U * ‘. . u,
Contextual = = 3} Lg‘oJ te ‘. * Uy
v O - S
h1 h2 hT
MBS O O &= I | O
Word Character
Chatacior E - = [= (| .

Embed Layer Embedding Embedding

X4 X2 X3 X7 as Q
L J L d GLOVE Char-CNN
Context Query

Figure 1: Bi-Directional Model

2.3.2 R-NET Gated Question Passage Matching and Self Matching

R-NET model uses a gated attention based recurrent network to incorporate question information
into passage representation in the Question Passage Matching Layer. The output of this layer is
a query aware context representation called vp. It uses additive attention to combine information
from context, question and vp at the previous time step to create an attention pooling vector c;.
Additionally it applies a sigmoid gate on ¢, and the context vector to focus on only the most relevant
parts of the context. Finally it applies an RNN on vp from previous time step and the output of
the sigmoid gate to calculate the vp at current time step. R-NET attention module has several
differences over the baseline attention module - 1) It uses additive attention instead of dot product
attention, 2) It uses a RNN to encode words in the passage with the attention weighted vector from
previous time step and 3) It uses a sigmoid gate to assign different levels of importance to context
parts depending on the question.

R-Net also performs self attention on the question aware context representation described above to
aggregate evidence from the entire context to infer the answer. The output of this layer is a self
matching vector hp. The design of this layer is very simiar to the question passage matching layer
and it also uses a sigmoid gate to assign different levels of importance to parts of context. Both
these layers are shown in Figure 2. We implemented both the question-passage matching and the
self-matching as described in the R-Net paper [2]. Finally we concatenated the vectors from the
context encoder states, the question passage matching and the self matching to form blended reps
that are passed to the output layer.

P(Begin) P(End)
re

Answer Prediction

4
pooling

PP
attention

Passage Self-Matching

Question-Passage Matching

Question & Passage Encoding

Word

[| Il character

Passage

Figure 2: R-NET Model

2.4 Output Layer

In the baseline model the blended representations from the attention layer are fed through a fully
connected layer followed by a RELU non linearity. Next we assign a score to each context location
by passing it through a downprojecting linear layer. Finally we take a softmax of the logit distribu-
tion to identify the start and end indexes. In the baseline model the start and end index are identified
independently and in the show examples mode we often found that the end index is before the start
index in which case the model doesn’t have an output. We implemented a smarter span selection at
test time as suggested in the DrQA paper [7]. For each start index, i we looked at the end index, j in
a window of 15 words after it and calculated the probability pstart(i)pend(j).By iterating over the
context length, we identified start and end index that maximized this product.

We also implemented an Answer Pointer for the output layer as suggested in the R-Net paper [2]
and shown in Figure 2. R-Net model uses an attention-pooling over the question representation to
generate the initial hidden vector for the pointer network. It then runs for two timesteps. In the first
time step it applies attention mechanism on the blended representations as a pointer to select the

start position and on the second step, the same process is repeated with the output from the first step
being used as an input to predict the end time step. Thus we condition the end prediction on the start
prediction. We observed that conditioning end prediction on start prediction significantly reduced
the number of cases where end index was predicted before the start index as in the baseline model.

2.5 Ensemble

Since we were able to get two different models working, we decided to ensemble them by combining
their predictions. As stated in section 2.4 above, for each single model, we pick start and end index
that maximize the product of the probabilities, pstart(i)pend(j). When we create predictions.json
for each model, we output both the predicted answer and the product of probabilities. For the
ensemble model, for each question we chose the answer from the model that had the higher product
probability associated with it. This led to an ensemble with better performance than either of the
single models.

3 Experiments

3.1 Data

We are using the Stanford Question Answering Dataset (SQuAD) which consists of 100,000+ ex-
amples created using Wikipeida ariticles. Questions are generated by crowdworkers and answers are
also manually created by quoting a segment from the context passage. Three answers are created
for each question. The dataset is split into three subsets: train, dev and test. Our models are trained
on train set and the hyper parameters are tuned using the dev set. The final model is submitted to
Codalab, which evaluates the model on the test set. Figure 3 below shows the distribution of context
length, question length and answer length over the training data. From the first plot we can see
that majority of passages have context length under 300 so we reduced it to 300 to help remove the
memory bottleneck. We kept the max question length to 30. The distribution of answer length plot
indicates that about 75% of answers are less than or equal to 4 words long.

Distribution of Context Length Distribution of Question Length Distribution of Answer Length

ntext Length

0 100 200 300 400 500 600 700 800 0 10 20 E) 2 50 60 0 0] 0 EY Y

Figure 3: Distribution of context length, question length and answer length.

3.2 Character Embeddings

We initialized the Char-CNN model with random trainable weights and chose a kernel size of 5.
Our results are included in the supplement material. We found that the Char CNN module didn’t
improve performance over baseline or BIDAF and made it overall slower to run. So we excluded
this module from our final model. For future work, we would like to experiment with initializing the
character CNN with pretrained embeddings.

3.3 CNN Encoder Layer

We experimented replacing the RNN Encoder in our BIDAF model with a CNN Encoder layer as de-
scribed in section 2.2. Our results were encouraging. The CNN based model had lower performance
than RNN based model but ran significantly faster. See results in the table below. The CNN Encoder
BiDAF model ran twice as fast as the RNN Encoder BiDAF and 9 times faster than R-NET. Given
more time, we would have experimented with including batch normalization and different values of
dropout to further improve performance of this module.

Model Name Dev F1 | Time per example(milli seconds)
BiDAF with RNN Encoder | 67.57 11.3

BiDAF with CNN Encoder | 63.51 6.6

R-NET with RNN Encoder | 65.65 63.45

3.4 Memory issues with R-NET Attention

We found that the R-NET model was very resource intensive and frequently led to out of memory
errors on our GPU. This model initializes 9 new weight variables for performing additive attention on
Question and Context and for self attention on the resulting vector from question-context attention.
The original paper [2] states that the hidden size was set to 75 for all the layers. We found that
the performance of R-NET wasn’t very good if we reduced the hidden size to 75 for the encoder,
attention layer and for the fully connected layer as the same variable was used throughout. Also we
found that the memory issues were originating in the R-NET attention module so we kept the hidden
size of encoder and the fully connected layers at 200, reduced the hidden size to 150 for the question-
context attention and 50 for the self-matching attention layer. This led to a big improvement in the
model performance but as a result our weights variables have different dimensions compared to the
original paper.

3.5 Final Hyper Parameters

The table below shows the final configuration and hyper parameters on the R-NET and the BiDAF
models.

Parameter BiDAF Model RNET Model

Embeddings Pretrained Glove Vectors Pretrained Glove Vectors
Encoder Bi-Directional GRU Bi-Directional GRU
Attention BiDAF Q2C and C2Q attention with modeling layer | R-NET QP Matching and Self Matching
Output Layer Softmax Output with smart span R-NET Answer Pointer with smart span
Embedding Size 100 300

Learning Rate 0.001 0.001

Dropout 0.15 0.20

3.6 Main Results

We saw good performance from both BiDAF and R-NET models with BiDAF performing better
than R-NET. The Ensemble model had better performance than either of the single models. See
results from the dev leaderboard in the table below.

Table 1: Performance of BiDAF and R-NET on dev leaderboard
Model EM F1

BiDAF 63.43 73.95
R-NET 59.89 71.08
Ensemble 64.37 74.49

3.6.1 Performance comparison between BiDAF and RNET

We looked at the loss and F1 score of the models by num of epochs and it can be seen in Figure 4
below that the two models trained differently. The R-NET model was more memory intensive and
trained slowly with dev loss still very high after the first epoch. On the other hand BiDAF trained
relatively quickly and the loss converged after a few epochs.

We also compared the performance of these models on different question types and answer lengths
as shown in Figure 5 below. The metric used for evaluation is Average EM accuracy. We saw
that RNET model performed much better than BiDAF on questions starting with when and worser
than BiDAF on questions starting with where. This builds on the intuition that an Ensemble model

Comparison of models on Dev Loss Comparison of models on Dev F1
07
— BIDAF

60 — RNET /"’f_',,—§——
—— Baseline 06

55

50 05

04

03 —— BIDAF
— RNET
30 —— Baseline

T T T T T T 02 T T T T T T T
1 2 3 4 5 6 7 B 1 2 3 4 5 6 7 8
No. of Epochs No. of Epochs

Dev Loss
Dev F1

Figure 4: Comparison among baseline, BiDAF and R-Net models

Comparison of two models on different questions Comparison of accuracy based on Answer Length
85
0 —— BIDAF — BIDAF
080 { — RNET 06 — RNET
Z 075 2
e Z o5
g 070 g
< <
= =
0.65
. L
& &
© 060 2
@ T
2 S
< 055 < 03
050
02
wh‘at \Mvwo how vm-‘:n when where If‘\ o}\ 1 2 3 4 5
Question Starts with Answer Length

Figure 5: Comparison of BiDAF and RNET

would perform better than the single models. For both models we saw that performance decreases
as the answer length increases though the decrease is sharper for RNET model. This highlights that
attention mechanism in both models still has challenges in understanding longer sequences.

3.6.2 Qualitative Comparisons between BiDAF and R-NET

We also looked at a few cases where the two models outputted different answers and there was
a significant gap in their confidence about their answer (the product of start index and end index
probabilities). We have shared 1 case below and another in the supplementary materials section.

Case where BiDAF performed better than R-NET

Context: Westwood One will carry the game throughout North America, with Kevin Harlan as
play-by-play announcer, Boomer Esiason and Dan Fouts as color analysts, and James Lofton and
Mark Malone as sideline reporters. Jim Gray will anchor the pre-game and halftime coverage.

Question: Who will carry the game throughout all of North America? True Answer: Westwood
One

Answer BiDAF: westwood one (probability of answer BiDAF: 0.9099)
Answer R-Net: kevin harlan (probability of answer RNET: 0.1871)

In this case R-NET model confused the person making play-by-play announcement with the person
carrying the cup
Case where R-Net performed better than BiDAF

Context - There would be no more scoring in the third quarter, but early in the fourth, the Broncos
drove to the Panthers 41-yard line. On the next play, Ealy knocked the ball out of Manning’s hand
as he was winding up for a pass, and then recovered it for Carolina on the 50-yard line. A 16-yard
reception by Devin Funchess and a 12-yard run by Stewart then set up Gano’s 39-yard field goal,

cutting the Panthers deficit to one score at 16201310. The next three drives of the game would end
in punts.

Question: Who had a 12-yard rush on this drive? True Answer: Stewart
Answer BiDAF: devin funchess (Probability of answer BIDAF: 0.2017)
Answer R-Net: stewart (Probability of answer RNET: 0.7403)

Comments - In this case BiDAF confused the player taking 16 yard reception with the one taking 12
yard run.

Both these examples show that if there are mutiple named entities together then even these state of
the art machine comprehension models can have challenges understanding which entity performed
which action.

4 Conclusion and Future Work

Our experiments indicate that both R-NET and BiDAF attention mechanisms improve the perfor-
mance significantly over the baseline. The two models have different underlying attention mecha-
nisms and different strengths so ensembling them results in an overall better model. For future work,
we would like to try the following:

o Further improve the performance of Char CNN module by experimenting with initializing
with pretrained weights and/or constructing a multi-layer CNN with different values of
kernel size and filter size.

e A CNN based encoder is promising as it can materially reduce training time. We would
like to try and increase the performance from this module by experimenting with different
layer structure and parameters for kernel size and filter size, including batch normalization,
increasing dropout etc. Our current BiDAF architecture uses a RNN modeling layer over
the output from the attention layer. It would be interesting to see if we can replace this
layer too with a CNN to have a complete CNN based architecture.

e In order to increase computational efficiency, the context paragraphs maybe sorted and then
different context maximum lengths maybe used in our further experimentation. This would
be more efficient than a single context maximum lengths and at the same time utilize all
available data.

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ Ques- tions for
Machine Comprehension of Text. ArXiv e-prints, October 2016

[2] Natural Language Computing Group, Microsoft Research Asia. R-NET: Machine Reading Comprehension
with Self Matching Networks

[3] Stanford NLP Group. The Stanford Question Answering Dataset, 2017. [Online; accessed 21-March-2017].

[4] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for word repre-
sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages 15321543, 2014.

[5] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[6] Yoon Kim. Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882 [cs.CL]

[7] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051, 2017.

