An Exploration of Question-Answering Modules

Margaret Guo Wen Torng
Department of Biomedical Informatics Department of Bioengineering
Stanford University Stanford University
mguol23@stanford.edu wtorng@stanford.edu
Abstract

In this project, we experimented with various deep learning-based models for
question-answering. Areas we explored include: extraction of features such as
exact match, part-of-speech (POS) word tokens, and character-based embeddings;
attention modules including Bidirectional Attention Flow (BiDAF), Co-Attention,
and self-attention; and different output modules that condition end predictions on
start predictions. Our final model uses the BiDAF attention along with a LSTM-
based start-conditioning output module, and achieved a test F1 score of 0.7061
and a EM score of 0.6020.

1 Introduction and Background

The task of machine compression (MC) is of particular importance within the national language
processing domain. MC problems are a form of question-answering, in which a machine attempts to
answer a question about a given contextual paragraph. Both the predicted and true (or labeled) an-
swers are spans within the context. Evaluation of these systems is performed by evaluating the exact
match (EM) and F1 scores on a separate test set. Recent advances in the neural-net based QA sys-
tems include character-level embeddings, various forms of feature engineering, different advanced
attention mechanisms, and output modules that condition end predictions on start predictions.

Character-level embeddings provide insight into internal structure of words and can be used to learn
representations of unknown words [1]. Additionally, prior models, such as the DrQA model[2], have
obtained high performance using features such as exact match (a word-to-word matching between
context and question), word-based features (including its stem word, entity type from Named Entity
Recognition [2], and part of speech (POS) tags), and aligned question embedding.

Attention level improvements allow the model to capture more complex interactions between the
context and question. Bi-directional Attention Flow (BiDAF) [1] allows for a two-way flow of
attention between question to context (Q2C) and context to question (C2Q). The Dynamic Co-
Attention model [3], is similar to BiDAF in that it has a bi-directional attention flow; however,
there is an secondary attention layer that allows the C2Q to attend to the Q2C output layer. Finally,
self-attention has been used as a supplementary attention layer to allow the context additionally to
attend to itself [8].

For the output module, the most basic models use two independent fully connected layers to generate
the start and end position scores. Because of the natural dependency of the end position on the start,
recent research has been focusing on novel architectures that condition end predictions on start
predictions [7].

In this paper, we use the SQUAD dataset [4] as the source of our context/question/answer examples.
We then made various changes to the input, encoding, attention, and output models. We report our
F1/EM scores of these experiments as well as perform error and attention level analysis on our best
model to inform future work on this challenge.



2 Approach

I Start I

End I

Aeee My .-

LST™M

“«> e

;DH

I
P x
Output Module ‘ I:I
I | -

£
wD“ i D
k|

] T

N 1 e G N

Attention
Attention (BiDAF, Co-attention, Self-Attention, or Baseline)
Module
Encoding = 5
Module & ‘:, | | & |
I I '
Xq XN Y1 M T
| 4 Feature-based
Input Module \ « Character-CNN

I GloVE-based word-
level

.

Context (C) Question (Q)

Figure 1: Schematic representation of our approach

Our model includes 4 modules that we outline and then describe in detail below:

1. Input Module: Converts word, character, and feature-based inputs into vector space
2. Encoding Module: Takes input features to learn temporal dependencies among input words
3. Attention Module: Integrates info from hidden states of the question and context words.

4. Output Module: Takes attention output to predict start and end positions within the context.

2.1 Input Module

The input module is split into word-level, character-level, and feature-based embeddings.

Word-level input module: Word-level embeddings are created by mapping individual word to-
kens into a lower dimensional space (d,,) based on pre-defined GloVE embeddings[5]. For a given
number of words in an input Lg, the output is of size Lg X d,,.

Character-level input module: Character-level embeddings are created by mapping the characters
of individual words into a lower dimensional space (d.). These embeddings are created by initially
extracting integer tokens that represent each character of every word. These character tokens are
then mapped into a trainable embedding layer (d.), such that a word of length Ly, with character
tokens (c; . .. cr,, ), has embeddings (e; . .. er,,, ), where ¢; is a vector of size d.. for the ith character
in the word. For a given input sentence of length Lg, the output matrix is of size Lg x d..

Once these embeddings have been created, we feed each character vector into a 1 dimensional con-
volutional neural network (CNN) to create a hidden representation of the characters (hy ...hr,,),
such that the character representation of h; for the ith character is computed from convolving char-
acter embeddings (e limk |- € €[it k] with a filter of size k to generate a vector of size f.

The output of this layer is a matrix of size Lg x Ly x f. This result is max pooled over each
individual word to create a Ls x f matrix for each input. Character level embeddings were then
concatenated with the word-level embeddings to create a Lg X (dy,+f) size matrix.

Feature-based embeddings: We used exact match and part of speech tags as our additional fea-
tures. For exact match, we created a Boolean vector that indicated whether a particular word in the
question was found in the context, and vice versa. For part of speech tags, we generated the tags
using the coreNLP software[6] for each word. Both feature vectors were concatenated to the above
embeddings of size Lg x h, where h is the total hidden size of the embeddings. The length of the



input, Lg, is fixed for the context and question to N and M, respectively, based on analysis of input
length distributions (see Section 3.1). We label the final embeddings for the context z; ...z N and
for the question y; . .. yas.

2.2 Contextual Embedding Module

The contextual embedding module takes in the input features to learn temporal dependencies among
the input words. We started with a single layer bi-directional GRU network as in the baseline
model. We then experimented with adding additional GRU layers to this module. We concatenate
the forward and backward hidden states to obtain the context hidden states and the question hidden
states respectively. From this module, we obtain H € R[Nx2h| from the context word vectors
[z1,Z2,...2N], and U € R[Mz2h]from query word vectors [y1, Yz, - - - Ya]-

2.3 Attention Module

In this project, we implemented different attention modules as follow:

Bidirectional Attention Flow: The BiDAF attention module uses two-way attentions, both from
context-to-question (C2Q) and from question-to-context (Q2C). The context-to-question (C2Q) at-
tention computes which question words are most relevant to each context word, which is concep-
tually similar to the baseline attention. The question-to-context (Q2C) attention signifies which
context words have the closest similarity to ones of the query, which could essentially provide us
information similar to the “exact match” input features. The final output of the BiDAF module is
G € R[N, 8h].

Co-Attention: The Co-Attention module also utilizes a two-way attention between the context and
the question. It calculates an affinity matrix L where each row contains the affinity scores of each
context word to the question words, and each column contains the affinity scores of each question
word to the context words. The affinity scores are then used to calculate the o (C2Q) and 5 (Q2C)
attention vectors. The Co-attention module then uses the computed C2Q attention softmax distri-
bution to attend over the [ attention vectors to get a second-layer attention S. To obtain the final
attention output, we concatenate « attention vectors with the S attention vectors. We then fed the
concatenated vectors through a single layer Bidirectional LSTM to obtain the final output G. The
final output of the Co-Attention module is G € R[N, 2h].

BiDAF with Inter-Context Self Attention: Although the Contextual Embedding Module should
have encoded dependencies among words within the context, it is known that LSTM and GRU cells
can still suffer from “memory loss” when the sentence is long. To enable information of early
words to be accessible to the words far away in the sentence, in addition to BiDAF, we added a
Self-Attention module to attend context hidden embedding to themselves. The equations of the
Inter-Context Self Attention module are as follows:

Cprojl = HW17 Cprojg = HW,

Sim = Cproj, Cofy

projz
aielf = softmaz(Sim;.)

From which we obtain the attention scores A, where A;. is aéel Iz We can then obtain the self-
attention output:

Outself = AH,
where , H € R[Nx2h], Wy € R[2hx2h], W, € R[2hx2h]

A € R[NxN], Outserr € R[Nx2h]

Finally, we concatenated the Bidirectional attention flow output with the self-attention output and
obtain the BiDAF with Inter-Context Self Attention G € R[N, 10h]



2.4 Output Module

The output module integrates output from the attention layer to predict the start and end position
of the answer. The baseline model predicts the start location and the end location independently,
given the attention output. Since the position of end position should be dependent on the start, we
experimented with two different strategies of conditioning end predictions on start predictions.

Predicting end positions conditioned on start attention : In this output module, we first calculate
the start scores and probability from attention output G using a fully connected layer and down-
projection layer as in the baseline output layer. This start probability distribution is then used to
obtain a summary “attention vector” of the information important for making the start prediction. We
then fed the attention output G into a GRU network, using this attention vector as the initial hidden
state, to obtain a second layer hidden representation M. My is then fed into a fully connected layer
and down-projection layer to generate the end predictions. The equations are summarized as below:

Ql = Relu(GW1 + bl)

Pstart = S0ftmar(Q1wstart)
Qyec = DstartG
My = SingleGRU (G, hidden_size = 2h,initialy, = Qyec)
Q2 = Relu(MaWs + b)
Pend = s0ftmaz(Q2wenq)
Where G € R[NzD], where D is the dimension of the attention output, W7 € R[Dxz2h] , by €
R[2h], wstart € R[2hx1], Wy € R[2hx2h] , by € R[2h], Wenq € R[2hX1].

BiDAF Output Layer: The BiDAF paper uses two bidirectional LSTMs (LST Mgtqr¢ and
LST Meyq, respectively) to compute the hidden representations for predicting the start and end
positions. Although this module did not model the end prediction on the start probability explicitly
as in the previous module, since it uses the output of LST M,r¢ as the input to LST M4, this
module implicitly conditions the end prediction on the start information. Following the Modeling
and Output layer described in the BiDAF paper [1], we implemented the output model described by
the following equations:

M, = BiLST Mg;4,+(G, hidden_size = h)
My = BiLST Mepnq(My, hidden_size = h)
Sstart = (G5 M1|Wstart, Dstart = s0ftmaz(Sstart)
Send = [G; M2]Wend, Penda = s0ftmaz(Send)

Where G € R[Nz D], where D is the dimension of the attention output wster¢ € R[(D + 2h)x1],
Wend € R[(D + 2h)x1].

3 Results

3.1 Datasets/ Use of Existing Software

We used the Stanford Question Answering (SQuAD) dataset [4] with over 100,000+ question-
answer pairs on 500+ Wikepedia articles to train this Machine Comprehension model. The baseline
code repository was provided by CS224N Winter 2018 class. The Stanford coreNLP module [6]
was used to generate token based features such as part of speech.

To determine the fixed context (N) and question length (M) to be inputted into our model, we deter-
mined the distribution of the number of words in each context and question example. We determined
a cutoff of 400 for the context length and 30 for the question length to provide the most amount of
information while saving memory. For the character-level embedding, we used a character per word
cutoff of 15 for both the context and question (see Supplement for Figure 4).



3.2 [Experiments

To determine the optimal machine comprehension model, we experimented with approaches to the
four modules outlined above. For the input module, we experimented with adding character level
and/or feature-based vectors to our baseline GLoVE based word embeddings (dimension 100). For
the contextual module, we experimented with adding additional RNN layers, which is categorized
under hyper parameter tuning. For the attention module, we experimented with various forms of
attention including, BiDAF, Co-Attention, and self-attention compared to baseline. For the output
module we experimented with various means of conditioning end prediction on the start prediction.
Finally, we determined the best hyper parameters (dropout, learning rate) for our best model.

The following parameters were used as our defaults for the experiment: learning rate = 0.001,
context length = 400, question length = 30, and dropout = 0.15. Batch size was chosen to be either
100 or 64 pending on how much memory the NV12 could handle. We trained all models until they
reached a steady state dev F1 score. We report the dev F1 and EM scores for evaluation.

3.2.1 Experiments in Input Module

Table 1: Experiments in Input Module, *=includes BiDAF output module

Experiments F1 EM

Baseline 0.4071 0.2934
Baseline + character CNN 0.4040 0.2939
Baseline + POS tags 0.3641 0.2614
Baseline + exact match 0.3961 0.2841

Baseline+ exact Match + char CNN  0.4003 0.2961
Baseline + exact match + POS tags  0.5792  0.4425

BiDAF* 0.6493 0.4990
BiDAF* + exact match 0.6527 0.5020
BiDAF* + character CNN 0.6551 0.4990
BiDAF* + POS tags 0.6390 0.4895

BiDAF* + exact match + POS tags  0.6327  0.4885

To determine the usefulness of various features, we added these additional feature layers (character
CNN, exact match word-based tags, and part of speech (POS) word-based tags), to the baseline
model in addition to word-level embeddings. We found very little difference between model per-
formance when adding in additional embedding layers individually to baseline. Interestingly, the
addition of the two feature vectors POS tags and exact match tags substantially increased perfor-
mance (0.5792) over baseline (0.4071).

For character level input features, we initially experimented with various versions of encoding the
character level information for each word, including using one-hot encoding of character tokens,
eliminating the trainable character embedding layer, and creating a dense representation of the char-
acter tokens (d.= 1). We also experimented with the number of CNN layers and the width of the
CNN window. None of these changes yielded significant improvements to the model.

We also report similar results when we add these features to our best attention module (described in
a later experiment). However, when we add both exact match and POS tags to the BiDAF model,
there is no improvement noted. Because of the relatively nonexistent performance increase on the
dev set we did not include these additional features in our final submitted model.

3.2.2 Attention Mechanisms

To benchmark the performances between different attention mechanisms, we replaced the basic
attention module in the baseline model with Co-Attention, Bidirectional Attention Flow (BiDAF),
and BiDAF with self-attention, and compare their performances to the baseline model. Because in
the original BiDAF paper, a BiDAF output module (described in section 2.4) was used along with
the BiDAF attention module, we also experimented the BiDAF attention and Co-Attention with
the BiDAF output module. Finally, we examine if adding inter-context self attention, described in
section 2.3, can help improve the performances.



The first three entries in Table 2 summarize the performances of basic attention, Co-Attention and
BiDAF attention along with the baseline output module. As expected, both Co-Attention and BiDAF
attention modules achieved better dev F1 and EM scores compared to the basic attention mod-
ule. However, the Co-Attention module achieved significantly better results (dev F1: 0.6097, EM:
0.4671) compared to the BiDAF attention module (dev F1: 0.4682, EM: 0.3445) when using the
basic output module.

Interestingly, when combining with the BiDAF output layer, the BiDAF attention + BiDAF output
layer model achieved a significant improvement (an 0.18 increase in dev F1 score) over the BiDAF +
basic output model. However, the same level of improvement was not observed for the Co-Attention
+ BiDAF output layer. Adding inter-context self-attention to the BiDAF attention + BiDAF out-
put model also did not seem to provide much improvement. Among all the six experiments we
performed with attention mechanisms, the best performing model is the BiDAF attention + BiDAF
output layer model. This is the final model submitted to the test leaderboard. The final official test
F1 and EM scores are 0.7061 and 0.6020, respectively.

Table 2: Attention Mechanisms

Experiments F1 EM

Basic Attention + Baseline output layer 0.4071 0.2934
Co-Attention + Baseline output layer 0.6097 0.4671
BiDAF Attention + Baseline output layer 0.4682 0.3445
BiDAF + BiDAF output layer 0.6493 0.4990
Co-Attention + BiDAF output layer 0.6171 0.4599

BiDAF + Self attention + BiDAF output layer 0.6266 0.4775

3.2.3 Different outputs

In this experiment, we benchmarked performances of different output modules compared to the basic
output module used in the baseline model. We first replaced the basic output module in the baseline
model with the Start Attention Conditioning output module described in section 2.4, and compared
its performance against the baseline model. In addition, as described in the previous section, we
compared performances of the BiDAF attention module trained with different output modules.

As can be seen in Table 3, models using both Start Attention Conditioning output module and the
BiDAF output module achieved better performances over their counterparts that use basic output
module. The Baseline + Start Attention Conditioning model achieved slight improvement over the
Baseline with basic output model while the BiDAF + BiDAF Output layer achieved significant
improvement over the BiDAF + basic output model. This result suggests that conditioning end
predictions on start prediction information is critical to decide the optimal answer boundary.

Table 3: Output Mechanisms

Experiments F1 EM

Baseline + Baseline Output layer 0.4071 0.2934
Baseline + Start Attention Conditioning 0.4326 0.3041
BiDAF+ Baseline Output layer 0.4682 0.3445
BiDAF + BiDAF output layer 0.6493 0.4990

3.2.4 Hyperparameter tuning

After we obtained our best model, the BIDAF model with BiDAF output module, we tried tuning
our hyperparameters, but we found the default values to be the best. We explored changing the
number of layers in the RNN encoder and changing the value of dropout. Note we did not perform
a thorough investigation on the effect of learning rate, because minor changes in learning rate (from
0.001 to 0.005) resulted in models that did not converge (increased loss).

For dropout we tried three different dropout values 0.25, 0.15 (default), and 0.05. We noted lower
dropout was helpful for speeding up training times. However, no significant change in the final dev
F1/EM scores (Table 4) was observed . For our submitted model, we used a dropout value of 0.15.



Table 4: Hyperparameter Tuning

Experiments F1 EM

BiDAF + BiDAF output layer + 1 additional GRU contextual embed layer 0.6368 0.4911
bidaf + bidaf output layer + dropout 0.05 0.6403  0.4895
bidaf + bidaf output layer + dropout 0.15 (default) 0.6493  0.4990
bidaf + bidaf output layer + dropout 0.25 0.6376  0.4867

3.3 Analyses

3.3.1 Error analysis

Here we analyze the performance of our best model, especially noting where the model does poorly
and how we could potentially improve this model in future iterations.

Example #1: Improvement over baseline

(excerpt of) Context: ... fire and explosion hazards exist when concentrated oxidants and fuels
are brought into close proximity ; an ignition event , such as heat or a spark , is needed to trigger
combustion . oxygen is the oxidant , not the fuel , but nevertheless the source of most of the
chemical energy released in combustion . . ..

Question: rather than the fuel , what is oxygen to a fire ?

TRUE ANSWER: oxidant

Predicted Baseline Answer: oxygen

Predicted BiDAF + BiDAF output layer Answer: oxidant

In this case, the basic attention module using in baseline was able to draw attention from the context
to query (C2Q) direction over the various question states, however, the additional Q2C directional
attention allows us to deduce that we are not looking to repeat the word “oxygen” but are looking
form a word analogy that describes the association between “fire” and oxygen.” In basic attention,
we fail to capture this relationship and thus fail to detect the correct word; while using BiDAF
attention, we obtain the correct answer.

Example #2: Lack of additional information

Excerpt of context: the bulk of huguenot émigrés relocated to protestant european nations such
as england , wales , scotland , denmark , sweden , switzerland , the dutch republic they also spread
beyond europe to several of the english colonies of north america , and quebec , where they were
accepted and allowed to worship freely .

Question : what area in modern-day canada received huguenot immigrants ?

True Answer: quebec

BiDAF Predicted Answer: england , wales , scotland , denmark , sweden , switzerland , the dutch
republic

This example shows the problems that arise when using a single contextual paragraph to answer
a question, since not all the concept is captured within a paragraph. In this instance, the machine
would have had to learn the relationship between Quebec and Canada. Which would have needed
to be reflected in the original GLoVE embedding vectors. Given that we were unable to detect a
relationship between Canada and Quebec, we might need additional features, or contextual clues to
be able to draw attention to the appropriate noun. Ways to address this issue include pretraining the
weights of the contextual embedding layer to include information on all available contexts so that
we can use a larger dataset to learn semantic meaning.

Example #3: Lack of understanding of syntax

Excerpt of Context: ... water on the eastern side flowed toward the atlantic , while to the west
water flowed toward the pacific across the amazonas basin . . .

Question: where did water to the west of the amazon drainage basin flow towards ?

True Answer: the pacific

BiDAF Predicted Answer: the pacific across the amazonas basin

In this case, while we did get the correct answer “the pacific” within our predicted context span. We
were unable to understand that the syntax of the answer span was not a true prepositional phrase. The
across the amazonas basin” is not referring to the pacific, but rather is referring to the movement
of water. This is a complex dependency relationship that is not captured by simple attention. A
potential solution to address this is to create vector representations of predicted dependency parsing
results and then feed this information as an additional feature for the context.



3.3.2 Attention Visualization

For the Co-Attention model, we visualize the heat-map of the C2Q attention matrix, which are the
softmax distributions calculated from the affinity matrix L. Below, we show two examples and their
respective C2Q attention visualization. Similar effects are seen in Q2C matrices (not shown).

u o
| | __m

Figure 2: C2Q attention matrix for example 1.

Example 1 Question: "how many other contestants did the company, that had their ad shown for
free, beat out?”

From the C2Q attention matrix shown in Figure 2 , we see that for the question word "how’, the co-
attention mechanism focus strongly on the context word "nine’, and for the immediately neighboring
question words *many’ ’contestants’, the attention found matching words in the context neighboring
to the word ’nine’. The model successfully uses the number information and the exact matching
words near the number to answer the question correctly.

Example 2 Question: “what one word did the nfl commissioner use to describe what super bowl 50
was intended to be?”

From the C2Q attention matrix shown in Figure 3 , we see that for the question word *what’, the co-
attention mechanism focus strongly on the context word ’spectacular’. The attention also assigned
high score for the exact match words *nfl’, ’commissioner’, ’super’, ’bowl’, The ’?* is attending to
the other punctuation marks. Interestingly, the context words ” > ” and ” ” ” before and after answer
”spectacular” both strongly attend to the question word “word”. It likely captures the semantics that
the word in between the quotation marks is emphasized and is more likely to be an answer. The
model successfully uses this information to answer the question correctly.

nnnnn

.....

Figure 3: C2Q attention matrix for example 2.



4 Conclusions

In conclusion, we explored various means to improve models for question-answering. Our best
model was similar to the BIDAF model with end conditioning on the start prediction. We noted
that more complex attention mechanisms that allow for Q2C and C2Q direction attention markedly
improved performance. For the output module, we noted that conditioning the end output prediction
on the start prediction also improved performance. While we did achieve increases in performance
using the word-based feature tokens including exact match and part-of-speech tags, these increases
were not evident when combined with the BIDAF model. Future directions include exploring addi-
tional feature representations including dependency-based models and aligned question embedding
features, and pre-training the contextual embedding layer using semi-supervised methods.

Acknowledgments

We want to thank the TAs for CS224N for all their advice for this project.

References

[1] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, & Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[2] Dangi Chen, Adam Fisch, Jason Weston, & Antoine Bordes. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051, 2017.

[3] Caiming Xiong, Victor Zhong, & Richard Socher. Dynamic coattention networks for question answering.
arXiv preprint arXiv:1611.01604, 2016.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, & Percy Liang. Squad: 100, 000+ questions for machine
comprehension of text. CoRR, abs/1606.05250, 2016.

[5] Pennington, Jeffrey, Richard Socher, and Christopher Manning. ”Glove: Global vectors for word represen-
tation.” Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP).
2014.

[6] Manning, Christopher, et al. ”The Stanford CoreNLP natural language processing toolkit.” Proceedings of
52nd annual meeting of the association for computational linguistics: system demonstrations. 2014.

[7] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer. arXiv
preprint arXiv:1608.07905, 2016.

[8] Natural Language Computing Group, Microsoft Research Asia. r-Net: Machine Reading Comprehension
with Self-Matching.



Supplementary Info

Train Context Histogram of lengths Train Question Histogram of lengths

m B 20000
20000
17500
15000
15000
P 4 12500
€ £
5 5
& 10000 3 10000
7500
5000 5000
2500
0 0
0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 &0
Input Lengths Input Lengths
Train Context Histogram of lengths of words Train Question Histogram of lengths of words
C 300000 D 175000
3000000 150000
Z500000 125000
g 2000000 £ 100000
3 El
S 1500000 S 1000
1000000 50000
500000 25000
0 T T T T 0 T T
0 5 10 15 20 r=) 30 - 0 5 10 15 20 r=3 30
Word Lengths Word Lengths

Figure 4: The frequency distribution of A) context input length within the training set, B) question
input length within the training set, C) number of characters within each word of the context training
set, D) number of characters within each word of the question training set. The red line indicates the
max length input we used for the word and character level embeddings.

QAModel/loss/loss dev/F1
6.00 0640
0.600

4.00
0.560
2,00 0.520
0.480

0.00
0.440

0000 3000k 6000k 9000k 1200k 1.000k 3.000k 5.000k 7.000k 9.000k 11.00k

Figure 5: The training loss (left) and dev F1 score (right) vs. number of iterations for bidaf + bidaf
output model with dropout of 0.05 (blue), 0.15 (red), 0.25 (orange)

10



