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Abstract

In this report, we built a multi-attention reading comprehension model for the
SQuAD dataset. The model encodes words by word vectors and character-level
CNN, incorporates Bidirectional Attention Flow, Coattention, and Self attention in
the attention layer, uses a bidirectional LSTM modeling layer, and at last performs a
max-probability answer selection in the output layer. Within 5 epochs, we achieved
F1 score 75.196 and EM score 64.565 on test set for a single model. In the experi-
ment part, we used data statistics for hyper-parameter selection, performed ablative
analysis to show contributions of different components, visualized attentions to
illustrate their effects, and analyzed accuracies regarding other criteria like answer
length.

1 Introduction

Reading Comprehension(RC) is a popular and challenging subtask in NLP where the machines are
trained to read paragraphs, comprehend its meaning, integrate with its own knowledge and come up
with an answer. SQuAD([1] is a large and high-quality reading comprehension dataset which contains
100K+ questions with answers directly taken from the given contexts.

In this project, we have built a reading comprehension model aiming at achieving good performance
on the SQuAD dataset. Started with the neural baseline model, we have made several improvements
regarding the Encoder Layer, Attention Layer and the Output Layer. Character-level CNN is added
to the Encoder Layer so that the inner structure of words and the out-of-vocabulary words can be
better handled with the character embedding. In the Attention Layer, the baseline attention model
is replaced with the combination of 3 different attention models, including bidirectional attention,
coattention and self-attention to better capture the attention flow in both directions. Modeling Layer
is introduced before Output Layer to capture the interaction of the context words conditioned on the
information provided by the question. In the Output Layer, instead of predicting starting and ending
position independently, we predict the ending position conditioned on that of the starting position,
and select the span that maximize the product of joint probability. Last but not least, hyper-parameters
such as embedding size are also tested during the implementation. With these improvements to the
model, we are able to achieve F1 score 75.196 and EM score 64.565 on test set for a single model.

The paper is organized as follows: Section 2 introduces the related work in the area that achieves
high performance on reading comprehension tasks followed by Section 3 which defines the problem.
Section 4 introduces our model in detail, and Section 5 discusses the results and error analyses based
on the experiments. Finally, we conclude our project and discuss about possible future improvements.



2 Related Work

Among the extensive the works on building deep learning systems for the SQuAD dataset' , most of
the top models adopted some form of attention mechanism, which has improved the accuracies for
this task by a large margin.

BiDAF model[2] uses a bi-directional attention flow upon its encoder RNNs, which includes both the
attention from contexts to questions and from questions to contexts. Dynamic Coattention Networks
model[3] has a Coattention Layer, which also involves a two-way attention between the context and
the question. Unlike BiDAF, coattention involves a second-level attention computation, which means
it attends over representations that are themselves attention outputs.

Microsoft proposed R-Net model[4], which in addition to normal attention, has a layer of self-
attention. By directly matching the question-aware passage representation against itself, it extracts
evidence from the whole passage according to the current passage word. These attention mechanism
help models to focus on specific part of the passage context, and therefore improve the answer
accuracy, though they may rely on other parts of the neural model to have best effect.

Typically, these models use some form of RNN on top of the attention layer for further modeling
and output layer. However, there are works that developed more complicated output layer to better
model this task. Instead of predicting the start position and end position (because answer is always a
segment in the passage context) independently, Wang et al. [5] uses a answer pointer layer to first
predict the start position and then uses an RNN to predict end position conditionally. Yu et al. [6]
further elevated the interdependence of these two positions by predicting among all the candidate
answer spans, the representations of which are obtained by some layers of RNN. This method can be
expensive because all possible spans of appropriate length need to have a hidden representation.

3 Problem Definition

The problem for the SQuAD dataset can be described as below.

Given two word sequences ¢ = (c¢1,¢2,-..,¢n),q4 = (q1,42,---,qn), Which are respectively
context and question. The model needs to learn a function f(c, ¢) that takes these two sequences and
maps to a pair of integers (I, ") ¢ N2 that are the start position and end position of the answer
to the question in the context sequence. 1 < [$@ < [ond < N,

4 Model Architecture

As is shown in Figure 1, the model involves 4 neural layers: encoding layer, attention layer, modeling
layer, and output layer.

Encoding layer: We use character-level CNN embedding and pretrained word embedding from
GLoVe, and put them through a layer of bidirectional LSTM for context and question embeddings.
The weights are shared between contexts and questions. The embedding dimension of character-level
CNN is fixed to be 20. GLoVe embedding dimension 100 and 300 are tried out during experiment.
Since higher embedding dimension does not help with increasing the F1 score, embedding dimension
of 100 is used in the final model.

To better capture the inner structure of words and better handle out-of-vocabulary word, we introduced
Character-level CNN into our model. The character vocabulary contains 70 commonly used characters
in ASCII together with 2 additional ones (for unknown character and padding character). We represent
each word w with characters ¢y, ...,cr, by [e1,...,er], where e; € R% is the trainable character
embedding for character c;. A single layer CNN contains a convolution layer with window width
(filter size) k, a ReLU and a max-pooling layer. The output represents the character-level encoding
embed gy, (w) € RY. In our model, we applied 3 CNN layers with different filter size k = [3,4, 5],
and set d, = 20, f = 100.

Attention layer: We include 3 different attention flow in our model: bidirectional attention flow,
coattention, and self-attention. Both bidirectional attention and coattention use the idea that attention

"https://rajpurkar.github.io/SQuAD-explorer/



output t

Answer position

[ Max-probability answer selection ‘

Logits + softmax

BiLSTM e e — >

| Logits + softmax

Modeling i f
BiLSTM > «— «—> —
Yy N 44 44
I — 1 = = =
[ T 1
Attention Bidirectional attention flow Self attention Coattention
question e
-
context question —_— “O context question
- —
Encoder BiLSTM — «—> < N — ——

SR . coEm coEm - e

word embed char embed word embed  char embed word embed  char embed word embed  char embed

I f

contexts questions

Figure 1: Overall model architecture

flows from question to context and from context to question. Self-attention addresses the context
self matching, pinpointing the important parts of the context. The outputs of 3 Attention Layers are
concatenated after the Encoder output before feeding into the Modeling Layer.

(a)

(b)

©

Bidirectional Attention

For context hidden states ¢y, ..., cxy € R?" and question hidden states g1, ..., gy € R?", the
similarity matrix S € RNXM represents the similarity between context and question, where
St = Waml€i; 5, & 0 851

Context-to-Question (C2Q) Attention outputs a; = Z]M:1 asq; € R?", where o =
softmax(9;.) € RM Vi € {1,...,N}

Question-to-Context (Q2C) outputs ¢’ = Zi\il Bic; € R?", where 3 = softmax(m) € RY,
m; = Mmax; Sl'j eRV:i e {1, ,N}

Coattention

Coattention computes two-way attention through 2 levels of attention computation. The first
layer starts with adding sentinel vectors ¢4, g4, which introduce the flexibility of not attend to
any particular word in the input, to the end of the hidden states. A projected question hidden
states 1, ..., ¢y, q;5 is computed based on the question hidden states g; = tanh(Wq; +b) €
R VY5 € {1,..., M}. Affinity matrix L € ROVHDX(M+1) geores the affinity score for
each pair of (c;,q;) where L;; = ch;. Context-to-Question (C2Q) Attention outputs
a; = Y M alq; € R?", where of = softmax(L;.) € RM*1 Vi € {1,..., N}. Question-

i=1 :
to-Context (Q2C) outputs b; = va:l'l c; € R?, where 3/ = softmax(L;.) € RN*!
Second level attention outputs s; = Zj‘ﬁl alb; € R* Vi € {1,..., N} are concatenated

with a; before fed into a bidirectional LSTM. The final outputs of the Coattention Layer has
form {uy,...,un} = bBILSTM({[s1; a1], ..., [sn; an]})

Self-attention

Self-attention directly matches the question-aware context representation against itself,
which apparently needs a C2Q attention (we use the C2Q part in BiDAF for the model). As-
sume that representation is vy, ..., vx € R!. We need each v; to attend to all {v1,...,vn},
thus e/ = v " tanh(Wyv; + Wav;) € R, of = softmax(e’) € RV, a; = Zjvzl alv; € R,
where Wy, W, are weight matrices and v is a weight vector. After that, we feed [a;; v;] to a
bidirectional LSTM to obtain the final representation.



Modeling layer: For the modeling layer, we use 2-layer BiLSTM, which is borrowed from model
BiDAF[2].

Output layer: The output layer contains two steps. In the first step, we use a fully connected layer, a
ReLU activation, and a softmax to generate probability distributions p(*@)  p(ed)for start position
and end position respectively. In the second step, we perform a max-probability answer selection,
and choose

(l(start)7 l(end)) — (starl)pgend)}

argmax {p;
1,5,1<j<i+L
as the starting and ending position of the answer, where L is some parameter to limit the length of the
answer segment. This step is similar to the one in Chen et al.’s work[7], and can be achieved in linear
time by a monotone queue.

S Experiments

In this section we analyze the dataset, describe the model configuration and accuracy, and demonstrate
some further analyses, which involve ablative analysis for model components, attention visualization
in sentence examples, and model accuracies regarding answer lengths.

5.1 Data analysis

The 100K+ question-answer pairs in the dataset is split into %80 training set, %10 dev set, and %10
hidden test set. Since we use both word and character embedding in the model, we need to pad
the short words/characters and truncate those that are too long. In order to help better choose the
threshold, we started with the analysis of the training data statistics.

Figure 2 shows the histogram of training context lengths, question lengths, and word length in terms of
characters in both context and question. Figure 3 shows the histogram of answer length and the starting
and ending position of answer in the context. Based on the statistics we obtained, we determined the
parameters context_len = 400, question_len = 30, word_len = 16, max_answer_len = 15,.
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Figure 2: Context and Question Statistics
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Figure 3: Answer Statistics
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In experiments, we set learning_rate o = 0.001, dropout_rate = 0.15, max_gradient_norm = 5.0,

hidden_size = 200, context_len = 400, question_len = 30, word_len =

16, max_ans_len = 15,

embedding_size = 100. Due to the memory limit of Tesla M60 GPU, we use batch size 20.



5.3 Model Accuracy

F1 score and Exact Match (EM) score are used to evaluate model accuracy. For each question,
precision is computed as the number of correct words divided by the length of predicted answer,
while recall is computed as the number of correct words divided by the length of the ground truth
answer. The F1 score is computed accordingly per question and then averaged across all questions.
EM score is the number of questions that are answered exactly the same as the ground truth divided
by total number of questions. Better models are expected to have higher F1 and EM scores.

In Table 1, we report the accuracies of our model on test set, and compare it to some state-of-art
works. Apparently, our model has very competitive accuracy on this dataset when compared to single
model approaches, and some more hyper-parameter tuning can possibly further elevate the accuracy.
(More epochs can help our model achieve higher scores but we only report 5-epoch result here due to
the delay of CodaL.ab test leaderboard)

Model Test F1 | Test EM
our model (5 epoch) 75.196 | 64.565
R-Net (single model) 80.7 72.3
BiDAF (single model) 77.323 | 67.947
Dynamic Coattention Networks (single model) | 75.896 | 66.233

Table 1: Model accuracies

5.4 Ablative Analysis

For better understanding of different components of our model, we did an ablative analysis on the
dev dataset, where we measure the accuracies while we remove one component by another in the
model until it degrades back to the public baseline. From Table 2 we know that attentions and LSTM
modeling layer can improve prediction accuracy by a considerable margin, while techniques like
max-probability selection and character-level CNN only have small improvements. Also, the order of
this analysis can have an impact on this analysis, thus the actual impact of self-attention may be more
than what is showed here.

Model Dev F1 | Dev EM
our model 74.961 | 64.503
without char-level CNN 74.557 | 63.983
without max-probability selection 74.44 64.021
without self-attention 73.915 | 63.605
without answer length limit 72.321 | 62.119
without coattention 70.31 59.782
without modeling layer 49.137 | 39.328
without BiDAF attention (i.e. baseline) | 43.522 | 34.276
baseline + coattention 64.478 | 54.011

Table 2: Ablative analysis for our model

5.5 Attention Visualization

Figure 4 plots the coefficients for context words regarding different types of attentions, for a sample
question.

Question what kind of arches does norman architecture have ?

Context norman architecture typically stands out as a new stage in the architectural history of the
regions they subdued . they spread a unique romanesque idiom to england and italy , and the
encastellation of these regions with keeps in their north french style fundamentally altered
the military landscape . their style was characterised by rounded arches , particularly over
windows and doorways , and massive proportions .



Answer rounded

Figure 4a shows BiDAF similarity matrix of the example above. Darker color represents higher
similarity score. From the plot we can see that same words in context and question have highest
similarity score, context word rounded and question word arches have relative high similarity scores.
The attention distributions of BiDAF are based on this similarity. Figure 4b shows the attention
distribution over context location when performing Question-to-Context Attention in BiDAF. This
distribution shows that Q2C attention extract words in the context that are highly related to the
question. Similarly, C2Q attention extract highly related question words for each context word.

Figure 4c shows the heatmap of the C2Q and Q2C attention distribution of Coattention model. Darker
color maps to higher scores. Each horizontal line depicts the importance of context words for a
certain question word; Each vertical line shows the importance of question words for a certain context
word. We can see that word kind, of and arches in the question are relatively important to many of
the context words, and this is consistent with human sense when we analyze the question: “what kind
of arches does norman architecture have ?”

Figure 4d visualizes distribution of self-attention for this example (darker color maps to higher
scores). From the plot we can see that question-aware context can effectively find critical words in
itself (“rounded arches”), and for them the attention scores are much higher. Within the attention
scores for these words, more relevant parts have higher attention scores. This is consistent with the
expectation that self-attention extracts important parts in context itself regarding to the question.

These illustrations demonstrate the effectiveness and different focuses of these attention mechanisms.
Although they all make mistakes sometimes, combining them together will hopefully give a satisfying
prediction result.

5.6 Accuracies by Answer Length

Answer length | Percentage | Average F1
1-5 | 94.40% 0.7514
6-10 | 4.74% 0.6663
11-15 | 0.71% 0.5530
16-20 | 0.12% 0.5128
21-25 | 0.02% 0.4334

Table 3: Model accuracy on different length of ground-truth answer (dev set)

Table 3 demonstrates the model accuracies for different questions in dev set, which are classified
by the length of ground truth answer. We can see that the accuracy for shorter answers are much
higher than longer answers, and answers of length more than 15 generally have F1 no more than 0.5,
because of the length limit in max-probability answer selection process. According to the length
distribution, it is reasonable to emphasize on shorter answers.

Figure 5 shows the distribution of different answer length both in prediction and ground truth answers
for dev set. Generally the prediction answer lengths are very close ground truth answer lengths, and
for some question the predicted answers are longer. The prediction line does not have answer longer
than 15 because of the length limitation in output layer.

6 Possible Improvements

Further improvement can be made on different aspects. For one thing, instead of computing start and
end position probabilities separately, a more intuitive way is to represent different candidate spans by
vectors, and choose answer span accordingly. The challenge comes from the number of candidate
spans, which requires a large neural network that is expensive regarding both time and space. For
another, as an important part of the model, different attention mechanisms may have a better way to
interact with each other, rather than simply being concatenated into long vectors.
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(d) Example of Self-attention
Figure 4: Illustration of attentions
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7 Conclusions

In this project, we built a reading comprehension model by incorporating different attention mecha-
nisms, constructing suitable modeling layer, and performing max-probability answer selection. The
implemented model achieves competitive accuracies (single model) on the SQuAD dataset. Ablative
analysis demonstrate the contribution of different components; visualizations show that the attention
mechanisms of the model is able to select correct context / question locations, and that they can
possibly have different emphases. Analysis on answer length further shows the effectiveness of the
model.
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