An Approach to Machine Reading Comprehension on
SQuAD

Jiafu Wu Alan Flores-Lopez
Electrical Engineering Computer Science
Stanford University Stanford University
Stanford, CA 94305, USA Stanford, CA 94305, USA
jiafuwu@stanford.edu alanf94@stanford.edu
Abstract

In this paper we present our approach to tackling the problem posed by the Stan-
ford Question Answering Dataset, SQuAD. SQuAD is an effective dataset to train
and test the task of machine reading comprehension — it offers a large number of
real questions and real contexts from which to select answers. Our architecture is
based on techniques that have performed well on the SQuAD dataset, including
an embedding layer with a character-level CNN, BiDAF and self-attention at the
attention layer, and pointer-network-based span selection in the output layer. Our
single model achieved a dev F1 score of 74.18% and a dev EM score of 62.69%.

1 Introduction

SQuAD, or the Stanford Question Answering Dataset, (Rajpurkar et al., 2016) provides an effective
testbed for reading comprehension style question answering, in which the answer to a question
is a span selected from a certain context. In this paper we present the end-to-end approach we
constructed from modules that build off from work mainly by Seo et al. 2016, Wang & Jiang 2016,
Chen et al. 2017, and Microsoft’s 2017 R-NET model '.

Additionally, we argue that while hand-crafted features like those used by Chen et al. significantly
improve a baseline model and are computationally cheap, they are redundant when utilizing more
powerful attention mechanisms. We also present an alternative method of smart span selection to
that given in Chen et al., 2017, and we analyze the performance of our model on various question
types in the SQuAD dataset, and the extent to which our best model improves our baseline with
respect to different question types.

2 Related work

The SQuAD dataset has seen rapid progress since its release in 2016. Since the beginning of 2018,
several ensemble models have surpassed human-level exact-match performance (EM 82.304) 2. Yet
as of March 2018, no single model submission has reached human level performance. The best
single model was submitted by Google Brain and CMU under the name QANet, with F1 and EM
scores of 87.773 and 80.929 respectively.

An important technique to increase the performance is to use attention, and almost all of the top-
performing models use some sort of attention. For example, Bidirectional Attention Flow (BiDAF)
uses question-to-context and context-to-question attention to capture the two-way interaction be-
tween the question and the context (Seo et al., 2016), R-NET uses self-attention in the context to

"Microsoft R-NET paper.
2SQuAD leaderboard.



dynamically collect evidence from the whole passage and encode the evidence relevant to the cur-
rent passage word into the passage representation! or attention at the output layer (Wang & Jiang,
2016).

Another important method is to add more input features for each input word. In BiDAF, it utilizes
pre-trained Glove word embedding as well as character-level CNN embedding(Seo et al., 2016).
On the other hand, DrQA included several input features such as exact match, token features which
include the Part-of-Speech tag, the Named Entity type and the Normalized Term Frequency, as well
as aligned question embedding which used the word embedding to attend to the word embeddings
for the question and use the resulting attention output vector as an additional feature (Chen et al.,
2017).

Less standard techniques have been attempted with various degrees of success, like predicting the
probability of a span directly instead of predicting answer start and end positions (Yu et al., 2016).

3 Baseline

We began work from a baseline with three components: 1) a RNN encoder layer to encode the
question and the context, 2) an attention layer that combines the question and context representation
and provides basic context-to-question attention, and 3) an output layer that down-projects the
hidden representations and runs two independent softmax layers to get the start and end location of
the answer span, (s, €).

4 Our Approach

Much like the approach taken in BiDAF, we can describe our model in terms of five layers: 1) a
representation layer for word embeddings and character-level encodings, 2) a contextual embed-
ding layer that coalesces the encodings in the previous layer, 3) an attention flow layer in which
the context and question representations are combined with bidirectional attention and self attention,
4) a modeling layer that takes the mixed context-question representations from the previous layers
into their final form, and finally 5) an output layer that ingests that final form to predict the start
and end positions of an answer. Additionally, we use a new method of smart span selection at test
time that gives preference to the answer boundary that the model is most confident about.

In the following descriptions, C' € R is the length of the context, () € R is the length of the question,
and h € R is the size of the hidden representation, or the output of the contextual embedding layer.

4.1 Representation Layer

We use 100-dimensional pre-trained Glove embeddings (Pennington et al., 2014). Additionally,
we also include character-level CNN (Kim, 2014). For our character-level CNN, we first embed
each individual character into a vector representation of length 20; for simplicity, we choose to only
embed digits, lower-case characters while converting all the upper-case ones to lower-case, and some
punctuations. Then we embed each character vector using a one-dimensional CNN with a window
width of 5 and an output dimension of 100. We then perform max pooling on all the character
embeddings for a word and obtain the final vector representation by concatenating the Glove word
embedding and the character-level CNN embedding. The Glove word embedding is an effective
model to capture the semantics of words in a large vocabulary, while our own character-level CNN
helps deal with out-of-vocabulary words.

4.2 Contextual Embedding Layer

Similar to BiDAF, we feed the representations of context and question vectors into a contextual
embedding layer for RNN encoding. A slight modification is that we utilize GRU instead of LSTM
because they have similar performance while GRU is more computationally efficient. Using this 1-
layer bidirectional GRU, we are able to further refine our word embedding by providing the context
of the words. Since the embedding is still focusing on the word level, we share the weights of the
GRU s for both the context and question embedding. Then we concatenate the forward and backward
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Figure 1: Model architecture diagram

outputs of the context and word embedding to get the context hidden state ¢; = [?Z, H] € R?" and
question hidden state ¢; = [q;, §;] € R?".

4.3 Attention Flow Layer

The next layer of our model includes several types of attention: Context-to-Question(C2Q),
Question-to-Context(Q2C), and self-attention. The first two attentions are taken from BiDAF, while
the last one was used in R-NET.

In order to compute the C2Q and Q2C attentions, we first need to get the similarity matrix S €
RE*Q using the context hidden state ¢; € R?" and question hidden state ¢; € R?".
Sij = ’LUZ;mICZ' + wZ;mij + ’LUZ;—mSCi 0 q; = R (1)

We make a modification here. In its original form, the attention mechanism takes the concatenation
of the vector representations [c;; g;; ¢; © ¢;]. But it is more memory-efficient to perform the matrix
multiplication and addition since the concatenation requires more memory.

4.3.1 C2Q Attention

For C2Q attention, we take the row-wise softmax of S to obtain the attention distribution of context
hidden states attending on each question hidden state, and we use that for a weighted average sum
of the question hidden states, which is the C2Q Attention output a;.

o' = softmax(S;.) € R?,Vi e {1,---,C} )
Q

a;=Y alg eR™Vie{l,---,C} 3)
j=1



4.3.2 Q2C Attention

For the Q2C Attention, we take the maximum of the corresponding row of the similarity matrix,
which is the maximum corresponding attention for the question attending on that context. After
obtaining all the weight vector for the context, we perform a softmax over the resulting vector and
use the softmax result to obtain a weighted sum of the context hidden states c;.

mi:maXSijER,ViE{l,-~,C} @)
J

8 = softmax(m) € R® ®)
C

CI = Z Bl-ci S R2h, (6)
i=1

4.3.3 Self-Attention

Third, for the Self-Attention, we perform matrix multiplication on the context representations with
themselves, along with weight matrices. Then we perform softmax on the attention distribution for
each context location and obtain a weighted average sum.

e = v"tanh(W1v;) + v”tanh(Wav;) € R (N
o' = softmax(e’) € R® 8)
C .
a = Z aju; € R?", )
j=1

A modification is also made here. The original form is eé— = thanh(W1 v +Ws v; ) but the operation
Wiv; + Wav; requires memory allocation of a tensor with shape (batch size, C, C, 2h). With the
modification, it only requires (batch size, C,2h).

At the end, we concatenate the context hidden state c;, the C2Q attention output a;, the Q2C attention
output ¢’ and Self-Attention output a’ to get

b; = [ci;a5;¢;0a5;¢;0c5a'] € RO Wie {1,---,C} (10)

44 Modeling Layer

After performing various types of attentions, we feed the attention distributions to the modeling
layer, which consists of two layers of bidirectional GRU. Given the attention distributions on the
context, this layer intends to capture the interactions among the context words. The output size of
this modeling layer is A for each direction.

4.5 Output Layer

Our output layer is an adaptation of work by Wang & Jiang, 2016. Let H € R"*¢ be the matrix of
final blended representations such that column ¢ of H is b;. We run a GRU network for two timesteps
to get probability distributions over the context for the start location 3, € R® and the end location
B. € RE. We condition the end distribution on the start distribution by giving /3, as part of the input
to the second step of the output RNN. The probability distribution for k € {s,e} and s = 1,e = 2
is given as follows,

Fy, = tanh(V H + tile(W°hy_1 + b°)), (11)
Br = softmax (v Fy, + tile(c)), (12)
where V € RPXM e € RM*P b € R?, ¢ € R, and v € R” are all parameters to train, and ‘tile’

simply tiles its input to match the dimensions required for the immediate surrounding computation.
The vector hy, is the hidden state of the k-th step of the output RNN:

hx = GRU(HB{, hi_1) (13)

The first hidden state hg is also a trainable parameter.



4.6 Max Boundary Confidence Selection

We use a smart span selection mechanism we call Max Boundary Confidence Selection at test time.
The method relies on fixing the answer boundary the model is most confident about and choosing
the other based on the first. Given the probability distributions for the start and end locations s and
Be, and a desired maximum answer length A, we choose the answer span (s, €) as follows.

1. Fix the boundary condition with the highest confidence, max(/3). Assume for ease of
explanation that max(f8;) > max(8.), so s = arg max .

2. Select e = s + argmax fBe[s : s + A]

The method is symmetric if max(5;) < max(fe).

5 [Experiments

We trained our model on the official SQuUAD v1.1 training dataset. Based on token-count analysis,
we set the question length to 25, the context length to 300, and the answer length to 15. The great
majority of examples in the dev set are smaller than this, and we save computation with smaller
dimensions. We use a dropout percentage of 20%, a hidden size of 250, and a batch size of 90.
We use TensorFlow’s Adam optimizer because it performed better than AdaGrad. Performance is
measured by a word-level F1 score and an exact match score computed against ground-truth answers.
These are the scores by which all models submitted to the SQuAD leaderboard are evaluated.

5.1 Results

The model we describe in this paper achieved F1 and EM scores of 74.18% and 62.69% on the dev
set after training for 6k iterations.

Q: What is the other NHL team aside from the Anaheim Ducks to reside in Southern California?

C: Professional sports teams in Southern California include teams from the NFL (Los Angeles Rams, San
Diego Chargers); NBA (Los Angeles Lakers, Los Angeles Clippers); MLB (Los Angeles Dodgers, Los
Angeles Angels of Anaheim, San Diego Padres); NHL (Los Angeles Kings, Anaheim Ducks); and MLS (LA
Galaxy).

Figure 2: Sample question, context, and model-generated answer in bold

5.2 Ablations

In order to examine the contribution of each component, we performed ablations on the dev set. The
result is shown on Table 1. Word and character embeddings play an essential role in the model, but
word embedding contributes more by providing the important semantics of the inputted words while
character embedding acts as a complement to that to handle out-of-vocabulary words.

We also ablate our three different types of attention. To ablate C2Q Attention, we replace the
attended question vectors with the average of the outputs of the question’s contextual embedding
layer. Similarly, to ablate Q2C Attention and Self-Attention, we replace the attended context vectors
with the outputs of the context’s contextual embedding layer. Out of the three types of attentions,
C2Q Attention contributes more on the improvement of the F1. In order to ablate the model layer,
we retrained our model without them and directly feed the output of the attention to the output layer.
Since the model layer acts as an encoding mechanism to capture the interaction between words, its
removal leads to a huge loss in F1; in fact, it plays the largest contribution on the F1 score. At the
output layer, we can ablate smart span select by removing it, and we can ablate answer pointer by
replacing it with the original fully connected layers. We can also observe that both provide positive
contribution on the final F1 scores.



Table 1: Ablations

Model Impact on F1

Word Embedding (-) 12.56
Character Embedding )11

C2Q Attention (-) 11.67
Q2C Attention (-)6.12
Self-Attention (-)4.9

Model Layer with GRUs (-) 20.26
Smart Span Select (-) 0.87
Answer Pointer (-) 1.25

5.3 Analysis

5.3.1 Performance of Max Boundary Confidence Selection

Adding Max Boundary Confidence Selection at test time with A = 15 improved or model’s F1 and
EM score by about 1% from 73.19% to 74.18% and 61.90% to 62.69% respectively. We also tried
the smart span selection presented in Chen et al., 2016, where (s, e) is found by maximizing the
quantity p(s) x p(e) across all spans. Besides being more computationally expensive, this method
increased our scores less to 73.75% F1 and 62.16% EM.

5.3.2 Additional Features

As part of our experimentation, we added two hand-selected features discussed in Chen at al., 2016:

1. Exact Match: is the token at context location c; also in the question?

2. Aligned question embedding: similar to exact match, but uses an attention mechanism to
add ‘soft alignments’ between similar but non-identical words.

When added to our baseline model, these features improved F1 and EM score by about 20% at almost
no computational cost. Yet adding these features to our large model resulted in an F1 decrease of
about 1%, and we detected overfitting earlier in the training processes. We suspect that exact features
like these are redundant with a more complex model because a more complex model has enough
representational power to deduce and exploit the features, and the model suffers from redundancy.
Indeed, attention diagrams from our large model show that both exact match and aligned question
embedding are already ‘noticed’ by the model. In Figure 3, attention is high at the places where
a context token appears in the question exactly (bob, soda) and approximately (buy, buys, bought).
Nonetheless, working with hand-crafted features may be a good way to quickly experiment with and
motivate novel attention mechanisms.

5.3.3 Performance by Question Type

We break down the performance of our top model on a variety of question types in Table 2 3. We also
present the change in score from the baseline to the model described in this report. We consider the
following interrogatives: who, whose, whom, which, what, how, why, when, where. Some results
are intuitive. The longer the ground-truth answer, the lower the performance, and ‘why’ questions
are more difficult to get right than ‘when’ questions. However, some results are worth analyzing
further. For example, questions that have two or more interrogatives or no interrogatives at all (e.g.
‘the atomic number of the periodic table for oxygen?’) have considerably worse performance than

3The first interrogative is ‘Early’, ‘Mid’, or ‘Late’ if it occurs at the first 25%, the middle 50%, or the last
25% of the question, respectively.
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Figure 3: Attention diagram for an example question

questions with a single interrogative. Interestingly, extra short answers and ‘how’ questions, which
make up a substantial part of the dev set, saw a markedly smaller increase in score from the baseline.

Questions in which the interrogative appears in the last 25% of the question achieve a substantially
higher performance than a regular interrogative placement at the beginning of the question. It is
also not obvious why ‘whose’, ‘who’, and ‘how’ questions are easier to answer. We suspect that
analyzing particularly low-performing and high-performing question types more deeply can yield
insights for new and better end-to-end methods, e.g., by learning what information the model has
not learned to capture and building an attention mechanism inspired by that deficiency.

6 Conclusion

We presented our end-to-end neural network for machine reading comprehension on the SQuAD
dataset. Our method builds off work done by high-performing models. We attempted a different
method of smart span selection at test time, which we call Max Boundary Confidence Selection. In
our dev dataset, this method worked better than the method that optimizes for the maximum values
of p(s) x p(e). We analyzed how our model improves the baseline with respect to different ques-
tion types, and we argued that hand-crafted features are ultimately redundant given more complex
attention models.

Future work could involve carrying out experiments with features involving question types. Our
analysis gives evidence that question types play an important role in what the model must understand
to provide a good answer, since our model learns how to answer different question types at different
rates. A future piece of work could provide a baseline model with hand-crafted features related to
question types (what interrogative is in the question, where it occurs, the number of interrogatives in
the question, etc.), see how the model improves each question type, tune the features, and then use
the feature-tuning process to inform novel model components, i.e. a new attention mechanism.



Table 2: Performance by Question Type on the Dev Set

Question Type EM% F1% A EM AF1 # Examples
Extra Short Ans (Single token) 68.29 7481 (4)23.39 (+)25.87 4147
Short Ans (2-4 tokens) 63.44 76.00 (+)31.56 (+)33.64 5101
Medium Length Ans (5-9 tokens) 45.85  67.38 (4+)31.71 (+)36.52 1132
Long Ans (10-19 tokens) 20.85 5247 (+) 1230 (+)26.67 187
Extra Long Ans (20+ tokens) 0.00 26.19 (+)0.00 (+)19.09 3
No Interrogatives 44.14 6155 (+)20.72 (+)31.15 111
One Interrogative 62.96 7448 (+)27.93 (+)30.64 9933
Two or More Interrogatives 6141 71.17 (+)31.56 (+)33.64 526
First Interrogative Early 62.89 7438 (+)27.93 (+)30.65 9424
First Interrogative Mid 60.14  71.21 (4)30.14 (+)32.39 700
First Interrogative Late 68.36 7893 (+)28.96 (+)31.62 335
First Word ‘How’ 63.58 75.82 (+)21.47 (+)25.13 1090
First Word “What’ 58.24 71.08 (4)29.64 (+)32.55 4753
First Word “When’ 80.17 86.05 (+)24.86 (+)25.96 696
First Word “Where’ 58.80 7251 (4)23.79 (+)28.55 433
First Word “Which’ 62.56 73.13 (+)28.41 (+)29.07 454
First Word “Who’ 7135 7892 (+)31.01 (+)32.79 1061
First Word ‘Whom’ - - - - 0
First Word “Whose’ 7941  86.96 (+)2647 (+)30.72 34
First Word ‘Why’ 3443 6344 (4+)2252 (+)34.99 151
Other First Word 6491 7527 (4)28.61 (+)30.93 1898
Total 7418 62.69 (+)28.03 (+)30.80 10570
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