Exploring neural architectures for NER

Vincent Billaut Marc Thibault
Department of Statistics Institute for Computational and Mathematical Engineering
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305
vbillaut@stanford.edu marcthib@stanford.edu
Abstract

Named Entity Recognition is a complex labeling task, and algorithms built to
tackle it need to incorporate the whole sentence information to best understand a
word’s context, in order to reach an optimal predicting performance. In this report,
we have explored various ways of taking into account a sentence’s crucial past and
forward dependencies to enhance the performance of standard deep learning algo-
rithms. We have focused on the impact of memory in a network (using LSTMs),
we have expanded it to incorporate forward information (through BiLSTMs), and
we have explored a contribution from [2], using a Conditional Random Field to
directly consider the dependencies between predicted labels.

We show that using LSTMs, and especially bi-directional LSTMs yields superior
performance. We also show that incorporating a CRF at prediction step does not
contribute to a better quality of prediction.

1 Introduction

Named Entity Recognition (NER) is one of the main classes of problems tackled by Natural Lan-
guage Processing. The goal is to identify named entities in sentences, and it can be most relevant for
information retrieval or text classification in domains like healthcare. One of the main challenges
with NER is the lack of labeled data, and most approaches, before deep learning became common-
place in NLP, used to mostly rely on hand-made rules and features to perform well, but therefore
lacked a great deal of robustness and generalizability, in particular when trying to learn or be applied
across languages (and a language-agnostic model is one of the key objectives in NER today).

The more recent approaches to NER all tackle the problem in a deep fashion, and perform signifi-
cantly better than previous ones. Some try to use unsupervised learning as a way to augment existing
features and provide more insight to the model, but the core of the task remains supervised.

Our goal is to implement various techniques that we have come across in the literature, and to
compare their performances against simple, well-tuned models (like simple bi-directional LSTMs)
to try and assess whether fanciness is really necessary for NER.

2 Background/Related Work

[2] was the first source of motivation for our work. The relatively recent idea of bringing together a
classical Markovian tool — namely Conditional Random Fields (CRF) — that had shown promising
results on its own (see [3]) and the modern deep learning approach, as has been tried on sequence
tagging in [1], particularly appealed to us. As a matter of fact, one of our main concerns with this
hybrid approach is that is doesn’t seem like a very natural way to tackle the problem, and so one
question guiding our experimentation process was whether it would be possible to reach similar
performances without it, but instead by fine-tuning a neural model.



3 Approach

3.1 Base Recurrent model

Our task is classification of each word within a sentence into one of the NER categories. Our model
consists of an embedding layer, projecting each word of the vocabulary into a 50-dimensional space.
The word embedding is initialized with GloVe ([4]) vectors, and is further trained for this specific
task.

We then use a Recurrent Neural Network (RNN) on these embedded words, to leverage the appear-
ance of memory in the network, in this highly past-dependent task. On the outputs of each RNN
cell, we apply an extra non-linearly activated layer, to transform the outputs of the Recurrent Net-
work into vectors of the same shape as the number of predicted classes. We finally apply a softmax
transformation, and use Cross-Entropy loss.

‘We also used enhancements of this base model:

using LSTM cells instead of classical RNN cells to have a more stable memory flux;
using a Bi-directional Recurrent Network to take into account future information;
using two (instead of one) extra layers on the outputs of the RNN;

stacking two Recurrent Networks (one being the input of the other);

using L2-regularization on learned non-bias parameters;

using Dropout on the outputs of the RNN.

Consequently, our base Bi-directional LSTM model may be described in the following fashion, with
x,; being the input words’ embeddings:

35, hg =0; s?, h? = 0; initialize LSTMs states
sF of = LSTMF (sF |, of | o) Vt € [1,T] propagate in forward LSTM
sg,0f = LSTM®(s2 1,08 1,2:) YVt €[0,T — 1] propagate in backward LSTM
o; = [of | 0P] concatenate outputs
0y = o(W.or + b) add extra layer
J: = softmax(6;) apply softmax
loss = CE(Jt, yt) compute cross-entropy

3.2 Incorporating the Conditional Random Field

We also chose to incorporate the information of a CRF fitted on the train data, as suggested by
Lample et al[2]. It encodes a Markov Chain, describing the probability of transitioning from a given
predicted label to another:

P[i, j] = Pr(Ye+1 = Yjlyt = yi) in training set

, where P is a stochastic matrix of size (k, k), when k is the number of considered classes. However,
we tried to use the information of the CRF in a different way than in this paper. Instead of using
the transition matrix P at each learning step, we use it only for prediction. This approach allows the
CRF to be incorporated as an extraneous source of information on top of any trained predictor.

Consequently, we chose to use this information to help us in predicting labels, from the outputs
9 of the Recurrent Network, using an iterative method. We begin by labeling the first word by
taking the optimal prediction outputed by the network. For further words, we select the maximum
of a weighted combination of the network’s output, and the probability of transitioning from the
previously labeled word to the other considered labels:

z0 = argmaz;(Jolj])
and
ze = argmax;(§:[j] + o.Plz—1,j]) Vt € [1,T)



Where « is a hyper-parameter which has to be chosen. This choice of method is meant to partially
reproduce the method developed in [2], by reducing the search beam to a greedy iterative algorithm.

4 Experiments

4.1 The data

The CoNLL-2002 ([5]) and CoNLL-2003 ([6]) shared tasks provide frameworks and benchmarks for
language-independent NER, as well as comprehensive labeled datasets. It has become the standard
dataset for benchmarking NER performances since, and we have relied on it (specifically, CoNLL-
2002) for our training and evaluation. It consists in about one million labeled words, across around
50,000 sentences.

4.2 Tuning the network architecture

Our main study consists in exploring the different architectures and parameters, and determining
which perform best for our task. First we compared the main architecture schemes: a simple feed-
forward neural network, a LSTM, and a bi-directional LSTM, each time finding near-optimal set-
tings for hidden layer sizes and learning rates. Then, restraining ourselves on the best performing
one, we tried tuning two other parameters: the L2 regularization parameter and the dropout rate.

4.2.1 Network architecture

First of all, we wanted to have a good-enough baseline, upon which to build and experiment later
on. We tried the following architectures:

e simple feed-forward neural network,

e LSTM with prediction layer on top,

e LSTM with two layers on top,

e bi-LSTM with prediction layer on top,
e bi-LSTM with two layers on top,

e stacked LSTMs,

and present the aggregated results in Fig 1. We chose to continue the study with a bi-LSTM, because
we found it to be the simplest model among the best performing ones.

4.2.2 Dropout rate

The first learning parameter we looked at in details is the dropout rate. It gives the portion of a
layer’s neurons we want arbitrarily desactivated at each pass over the network, and it is designed
to give the network more robustness (because the neurons “learn” to not depend too much on each
other). We find that the best performances, with everything else fixed, are achieved with a dropout
rate around 20%, as shown in Fig 2 — comparing learning curves — and Fig 3 — comparing best
performances.

4.2.3 L2 regularization

Once satisfied with our bi-LSTM model with 20% dropout, we tried tuning L2 regularization, keep-
ing everything else fixed.

L2 regularization can be written as follows:
regularized loss = loss + B (||[Whl|2 + |[|[Wal|2 + ...)

where the WV are the weights matrices involved in the model, and 3 is the regularization hyper-
parameter, which determines how strong we want to penalize large weights.

We tried a rather wide grid of values for /3, and could compare each one’s performance, both looking
at the learning curves (Fig 4) and at the best performance (Fig 5). Surprinsingly, the unregularized



Comparing different configurations

dev F1

—— LSTM, hidden layer = 50, learning rate .005
Stacked LSTMs, hidden layer = 50, Ir .005

—— LSTM, hidden layer = 50, Ir .005, extra top layer 20

—— Bi-LSTM, hidden layer = 20, Ir .005, extra top layer 20

—— LSTM, hidden layer = 20, Ir .05, 2 extra top layers 20

—— BIi-LSTM, hidden layer = 20, learning rate .0005

02{ — Bi-LSTM, hidden layer = 50, learning rate .005

—— Bi-LSTM, hidden layer = 100, learning rate .005

—— BI-LSTM, hidden layer = 200, learning rate .005
Bi-LSTM, hidden layer = 100, learning rate .01
Bi-LSTM, hidden layer = 200, learning rate .01
Bi-LSTM, hidden layer = 200, learning rate .02

00 T
0 5 10

15
epoch

Figure 1: Comparing many different architectures and learning parameters led us to choose a bi-
LSTM for the rest of our study. Some models with additional layers may have been able to perform
as well with finer tuning, but we considered that the simpler would bring the most robustness

Comparing different dropout rates

08

o7

06

05

dev F1

04

Bi-LSTM, extra layer size = 50, Ir .005 (baseline)
baseline - keep rate = 0.99

baseline - keep rate = 0.95

baseline - keep rate = 0.9

baseline - keep rate = 0.85

baseline - keep rate = 0.8

baseline - keep rate = 0.75

—— baseline - keep rate = 0.7

~——— baseline - keep rate = 0.65

03

02

0 5 10 15 20 5 30

epoch

Figure 2: Learning curves for different dropout rates (dev set F; score as a function of the number
of epochs) ; we see that the most optimal dropout rate for learning is around 20%



Performance as a function of the dropout rate
—— dev F1
train F1
best performance

085

080

F1 score

075

keep rate

Figure 3: Best performance of the model, as a function of the keep rate (1 - dropout rate)

baseline is almost unbeatable. Still, we consider it sane to introduce some weight penalization, and
therefore keep 5 = 3 107°.

Comparing different L2 penalization

10

08

06

dev F1
\
=\
|

04 — e

Bi-LSTM, extra layer size = 50, Ir .005, dropout .2 (baseline) - 12 reg beta = 2e-8
baseline - 12 reg beta = 5e-8
baseline - |12 reg beta = 2e-7
baseline - 12 reg beta = 2e-6
baseline - |12 reg beta = 5e-6
baseline - |12 reg beta = 1e-5
baseline - |12 reg beta = 2e-5
baseline - |12 reg beta = 3e-5
baseline - 12 reg beta = 5e-5
baseline - 12 reg beta = 2e-4
baseline - 12 reg beta = 5e-4
baseline - |2 reg beta = 1e-3

02

00 T T T
0 5 10 15 20 P 30

epoch

Figure 4: Learning curves for different 3 values (dev set F} score as a function of the number of
epochs) ; we see that surprinsingly, few regularized models reach the out-of-sample performance of
the unregularized baseline

4.3 Incorporating the CRF

We have tried to incorporate the prediction of a pre-trained CRF on top of two models: a simple
LSTM model with 50 recurrent cells and an extra layer, as well as our best-performing model, a



Performance as a function of L2 regularization

— devFl
train F1
best regularized performance

N

\

her

F1 score

107 100 10 10 10
regularization parameter (beta)

Figure 5: Best performance of the model, as a function of the regularization parameter ; we select
the most penalized model among the best performing ones.

Bidirectional LSTM. We have tried several values of the o parameter on an exponential scale, to see
which one yields the best predicting performance. The « value which performs best on the train set
is the one we will choose for evaluating our dev set.

We have summarized the results of varying the CRF’s o parameter on our flagship Bi-LSTM model
in Fig 6. First, we see that the dev F performance curve closely follows the train F curve. This
means that tuning the o parameter does not lead to an overfitting on specific subsets of the studied
set. However, we obtain disappointing results on the contribution of the information of the CRF. The
best results are obtained by not considering the CRF. Using more information from the CRF yields
a steady decrease in F performance.

It appears that the way we included the CRF in our model is not relevant for prediction. The infor-
mation carried by the labels transition matrix P is not predictive enough, and it is over-expressed
compared to the recurrent networks before being able to contribute in a constructive way.

Performance of the BiLSTM + CRF model, for various levels of CRF importance

— trainfl
— devfl

(@B without CRF

dev F1

04

02

0oL -
10 107 10" 10
alpha CRF

Figure 6: Train and Dev set performance of a Bi-LSTM model, incorporating a CRF on the predic-
tion step, versus the importance « given to the CRFE. No positive level of importance yields superior
performance. The best decision is not to use the extra information from the CRF.



5 Conclusion

We have produced the following table to summarize our main results for each attempted technique.

l Model | Dev Fy ||
Naive word-by-word 0.691
LSTM 0.597
LSTM + CRF 0.475
LSTM + extra layer 0.770
LSTM + extra layer + CRF | 0.751
Bi-LSTM 0.796

Overall, we see that it is highly relevant for a NER task to incorporate context information using re-
current networks. Our best-performing model is the Bi-LSTM, which means that future information
is also crucial when labeling named entities.

We chose to use a simplified version of [2] to use the information of a Conditional Random Field
on the set of labels. We have shown that the way we implemented prediction algorithm using both a
Neural Network and a CRF is not relevant when labeling.

The next leads we are currently following to extend and enhance our models are using an attention
layer on top of our recurrent network, as well as using CRFs in a smarter way, such as at training
time, or using a bidirectional CRF.



References

[1] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional Istm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

[2] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and Chris
Dyer. Neural architectures for named entity recognition. arXiv preprint arXiv:1603.01360,
2016.

[3] Andrew McCallum and Wei Li. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003-Volume 4, pages 188-191. As-
sociation for Computational Linguistics, 2003.

[4] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pages 1532—-1543, 2014.

[5] Tjong Kim Sang and Erik F. Introduction to the conll-2002 shared task: Language-independent
named entity recognition. In Proceedings of CoNLL-2002, pages 155-158, 2002.

[6] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In Proceedings of the seventh conference

on Natural language learning at HLT-NAACL 2003-Volume 4, pages 142—-147. Association for
Computational Linguistics, 2003.



