MACHINE COMPREHENSION SYSTEMS ON SQUAD
DATASET

Shantanu Thakoor, Megha Jhunjhunwala
Department of Computer Science

Stanford University

{thakoor, meghaj}@stanford.edu

ABSTRACT

Machine comprehension is a key subfield of artificial intelligence, with the aim
of building a system that can understand some unstructured information. In par-
ticular, reading comprehension is an important application of natural language
processing, providing a measure of how well computers can understand textual
information. For this project, we implement the Bidirectional Attention flow ar-
chitecture and introduce a soft labeling technique. The resultant model achieves
an F1 score of 77.091, and an exact match score of 66.286 on the SQuAD test
dataset.

1 INTRODUCTION

Machine comprehension is an interesting NLP task which strives towards improving the capability
of computers to understand natural languages and their description of how the world functions.
Some important machine comprehension tasks include question-answering (Weston et al., 2015),
text summarization (Gambhir & Gupta, 2017), and visual question answering (Hu et al., 2017).
End-to-end deep learning techniques have led to significant improvement in a number of machine
comprehension tasks.

The SQuAD (Rajpurkar et al. (2016)) challenge provides a reading comprehension dataset, with
the task being to predict the right answer given a paragraph and a question on that paragraph.
The answers are always a set of contiguous words from the paragraph, and so the model only
needs to select a ”span” of text from the given context. The SQuAD data set has been created by
human crowd-sourcing, and hence it is considered to be a challenging testbed to evaluate intelligent
question answering systems.

2 RELATED WORK

Many other Question Answering data sets like SQuAD have been made available recently. WikiQA
(CITE) is one such dataset, which uses Wikipedia as a source of passages and answer is a sentence
which can be present in any of the different documents. This is a key difference between SQuAD
and other datasets as SQuAD restricts the answers to a single passage.

There has been promising work on reading comprehensions done recently. Most of these successful
models use an end-to-end deep learning framework, which may be the most important reason for
their success. Match-LSTM (Wang & Jiang, 2016) is one such model that uses attention from context
to question along with an answer pointer network. Bidirectional attention flow (Seo et al., 2016) is
a more complex model with attention flowing from question to context and vice-versa, which helps
capture nuanced interactions between context and question words. Another advanced models based
on similar two-way attention between context and question is the Dynamic Coattention Network
(Xiong et al., 2016).

Character-level CNNs (Conneau et al., 2016) are another type of models that have gained a lot
of popularity recently on NLP tasks. Their main advantage is the use of morphology in order to

handle out-of-vocabulary words more effectively. These techniques are also used in popular machine
reading systems, to further boost performance on a wide range of texts.

Most of the models discussed above output the start and the end of the answer span independently.
However, this is a serious model limitation and attempt have been made to condition the end index
based on the start (Wang & Jiang, 2016). Another approach to handle this limitation is to directly
output probability of all candidate chunks up to a particular length. This appears in the Dynamic
Chunk Reader model (Yu et al., 2016), although it is unclear whether it leads to an improvement in
performance without heavy feature engineering.

3 MODELS

3.1 BASELINE

The baseline model uses a 1-layer bidirectional GRU (Chung et al., 2015) to convert the input con-
text and question embeddings (pre-trained using Glove (Pennington et al., 2014) into context and
question hidden states. The forward and backward hidden states are concatenated to produce the
resultant hidden state.

{e1,&1,...,en, 6N} = biGRU ({z1, ...,zN})
{@t,&1,....a%,§n } = iGRU ({1, ..., yn })
ci = e, &l e R®viec{1,.,N}
¢ = @, §) € R*"Vj e {1,..., M}

The GRU layer is followed by the attention layer where a dot-product attention is applied between
the context hidden states attending to the question hidden states. The attention output is then pro-
duced as a weighted sum of the question hidden states.

el = [CZqu, ...,cZTqM] e RM

o' = softmaz(e’) € RM
M
a; = Zaé—q]— &R
j=1

The attention outputs are concatenated to the context hidden states in order to produce the blended
representations. Each of the blended representations are then fed through a fully connected layer
followed by a non-linearity. A final linear layer produces two logits (one for start and the other for
end) corresponding to each context word. Finally, the softmax function is applied over the logits to
obtain a valid probability distribution. A cross-entropy loss function was used along with the Adam
Optimizer.

3.2 BIDIRECTIONAL ATTENTION FLOW

The BiDAF model (Seo et al., 2016) uses the idea that attention should be allowed to flow in both
directions, i.e, from the context to the questions and vice versa. Figure 1 shows the neural network
architecture for the Bidaf model we implemented. It is an improvement of the basic attention layer
and produces much better accuracy because of this addition flexibility in the modeling.

A similarity matrix S € RV*M is computed between the context and question hidden states as
follows.

T
Sij = Wgim|Ci; 455 ¢i - 9]
The Context-to-Question attention is similar to the baseline attention layer. Taking row-wise

softmax of S yields a probability distribution and the attention outputs are obtained by a weighted
sum of question hidden states.

o' = softmaz(S;.) € RMvie {1,..,N}

9t

M

d=i

Now we perform Question-to-Context Attention. We take the max of the corresponding row of .S
for each context location. Then, we take the softmax over the resulting vector to obtain a proba-
bility distribution over context locations. The question-to-context output is obtained by taking the
weighted sum of context hidden states using the above probability distribution.

m; = maa:jSij € RVi € {1, ,N}
B = softmax(m) € R"

N
¢ = Bici € R*h

=1

The final blended representation for each context word is obtained by combining the context hidden
states ¢;, the C2Q attention outputs a; and the Q2C attention output c .

’

bi = [eisa55¢i - as3ci - ¢]

3.3 DyNaMIC CHUNK READER

Instead of predicting two independent probability distributions corresponding to the start and the
end of the span, DCR directly predicts the probability of the chunk. We only consider the chunks up
to a certain length L, a hyper-parameter in our experiments. The blended representation from our
Bidaf model is used to construct the representation of resultant chunks.

For any chunk ¢;; = w;, w;, , w;y2, ..., w;, the representation of ¢;; = [hy(i); hy(j)] where hy and
hy, are the forward and backward hidden states respectively.

After the final representation of each chunk is obtained, a simple fully connected softmax layer is
used to predict the probability of the chunk being the answer. The main advantage of this model is
that it outputs a joint distribution of start and end indices of the correct answer, which is an inherent
limitation of the bidirectional attention model.

Start End Query2Context
Output Layer L'b' D i W
m m, my u,
o B o l u
Modelng Layer | :
{0 o I o B l
9 92 Or
M:r::;ﬂe Flow [o.g.-,zmug: ::n (iam:xl?ﬂuery u
h, [hy u, u
e | SC1C O [J L e |

Word Embed b
Layer

O a =

Figure 1: Neural network architecture of the BIDAF model

4 EXPERIMENTS

4.1 DATASET

All our experiments are on the SQuUAD dataset (Rajpurkar et al., 2016). The train set consists of
over 86k examples, while the dev and test sets consist of over 10k examples.

Preliminary analysis of the training data shows that most answer spans are usually quite short, with
most being less than 5 words long, as seen in Figure 3. Similarly, we see in Figures 4 and 5 that
the answer usually rarely lies near the end of the context. Finally, in Figure 2 we see that most
contexts are of length less than 250. This insight in particular is helpful, as it allows us to train on
only examples of length less than 250, leading to a model with fewer parameters that can be trained
much more efficiently.

0.012 - T 80000

0010

0.008

Frequency of occurrence

0.006 § 40000
g
< 30000
0.004
20000
0.002
10000
0.000 0
0 100 200 300 400 500 600 700 800 0 5 10 15 20 35 30 33 40 45
Context length Span size
Figure 2: Frequency of context lengths Figure 3: Frequency of answer lengths
60000 50000
50000
40000
40000
g > 30000
2 30000 g
g g
- 20000 iC. 22000
10000 10000
0
0 100 200 300 400 500 600 700 00 100 200 300 200 500 500 700
Start position End position
Figure 4: Frequency of answer start position Figure 5: Frequency of answer end position

4.2 SOFT LABELING

Although the task of predicting the optimal start and end positions is being treated as a classification
task, it does not take into account the similarity between classes. In our experiments, we find that
without heavy feature engineering, the Dynamic Chunk Reader model does not perform as well as
our baseline. We hypothesize that this is due to it learning using an overly harsh metric - it penalizes
the model unless it predicts both the start and end positions perfectly, which may be difficult. On
the other hand, even the baseline does not take into account inter-class similarity - it penalizes the
model even if its prediction is very close to the correct position. We propose a novel method we call
soft labeling, to take advantage of this inter-class similarity. We define our a distribution p where
pi o exp(—T|i — t|), where T is a temperature hyper-parameter and ¢ is the original target position.
We thus train our model to learn to output p. Note that our optimization step is still natural - the
cross-entropy error corresponds to minimizing the cross-entropy between our outputted distribution
and the desired distribution p, which is exactly what we want. Figure 6 demonstrates the significant
advantage of this method, even on the baseline model.

We note that soft labeling may improve our score even further on the official SQuAD evaluation.
The official SQUAD evaluation compares our answer to the answers of three human annotators, and
takes the best of the three scores. Only one of these three answers is available to our model during
training. In the event that our model fails to output the exact same output as the answer, we would
like to predict an output close to that one answer, as the other two human annotators have also
presumably chosen answers similar to the first one - in other words, our model would benefit from
taking advantage of inter-label similarity.

aev/kl

ETL T Smoothed Value Step Time Relative
o baseline 0.3581 0.3694 5.500k SatFeb 17,17:03:48 2h 3m 56s
onlyTempChanged 0.3784 0.3868 5.500k Sun Mar 4,03:58:43 4h 10m 29s

Figure 6: Dev F1 scores of baseline model, with and without soft labeling

ADDITIONAL FEATURES

In addition to using pre-trained word embeddings for each context and question word, we augment
our inputs by adding in extra features known to be useful. These include:

e For each token, whether it is purely alphabetical, alphanumerical, or other
e For each context token, whether or not it is present in the question
e For each question token, whether or not it is present in the context

4.3 HYPER-PARAMETER DESCRIPTION

In our experiments, we obtain the following optimal values for hyper-parameters and training
choices after a wide range of trials:

o We use 200-dimensional GloVe word embeddings, and embeddings are not trainable (as
this leads to high overfitting)

o The batch size is 256

o The recurrent network used is an LSTM, with a hidden state size of 150

o We use the Adam optimizer with an initial learning rate of 0.001

e Learning rate is decayed by a factor of 0.98 every 500 iterations
We note that in our experiments, using layer normalization (Lei Ba et al., 2016) greatly decreases
generalization error, but this comes at the cost of a 5-fold increase in the training time. For this

reason, our best performing models are not trained using layer normalization, as training for more
epochs has shown better results.

RESULTS

In Table 1, we provide a summary of the results obtained and a limited ablation study of our various
features.

Our best performing model, the ensemble of 3 architecturally similar Bidaf models trained with
differing hyper-parameters, achieves a test F1 score of 77.09 and test EM = 67.40, placing us at the
8th position on the leaderboard.

Model Dev F1 | Dev EM
Baseline 39.15 30.90
Baseline + Soft Labeling | 41.15 29.54
Dynamic Chunk Reader | 44.75 31.58
Bidaf with layer norm 64.81 48.93
Bidaf without features 71.61 59.80
Bidaf with features 73.88 60.19
Ensemble of 3 models 74.86 63.20

Table 1: Results of our models on SQuAD dev set

5 ANALYSIS

In order to understand the predominant type of errors that our best model (ensemble of 3) was
making, we computed separate F1 scores on the dev set on each of the different question types.
Fig 7 shows the performance of our model on different question types. Our model performs the
best on "Where” and "Who” question types which makes sense as answers to these questions are
usually proper nouns for which enough information is usually captured in the word embeddings. In
sharp contrast to such questions are the "When” and "How” (usually ”how many”’) questions whose
answer types include mostly numbers and since we did not train a character level embedding, most
of such numbers would be UNK tokens. Our model has very little signal to do good in such question

types.

We also plotted heat maps corresponding to the context-to-question attention outputs of our model.
The heat maps helped us to analyze probable reasons the model was making errors in predicting
the correct answer. For example, whenever the model correctly predicts the answer, it is successful
in identifying the most important words in the question that it needs to attend. On the contrary,
whenever it does badly, it fails to give attention to some key word which was crucial to extracting
the correct answer.

In Fig 8, the example is as follows:

Context: during this period , the island enjoyed increased revenues through the sale of flax ,
with prices peaking in 1951 . however , the industry declined because of transportation costs and
competition from synthetic fibres . the decision by the british post office to use synthetic fibres for
its mailbags was a further blow , contributing to the closure of the island ’s flax mills in 1965 .
Question: what did the island sell for increased revenue during this period ?

True answer: flax

Predicted answer: flax

Here, our model pays attention to important question words like sell”, ”increase”, and “revenue”.

In Fig 9, the example is as follows:

Context: the forests play a vital role in harbouring more than 45,000 floral and 81,000 faunal species
of which 5150 floral and 1837 faunal species are endemic . plant and animal species confined to a
specific geographical area are called endemic species. Question: how many endemic floral species
do forests harbor ?

True answer: 5150

Predicted answer: 45000

Our model is only giving attention to question words like “many”, ”floral” and “species” while not
giving enough attention to “endemic”. Also, since no character level embeddings were used, our
model is not able to distinguish between different numeric strings.

6 FUTURE WORK

One major limitation exposed during error analysis of our best performing model was the lack of
embeddings for numeric strings. This can be effectively improved by adding character level embed-
dings as they would help both for numbers and out-of-vocabulary words. Also, as shown by our
results, adding textual features greatly improve the performance of the model. Adding POS/NER
features would thus greatly enhance the performance of the model. Another observation that we had

Breakdown by Question Type

Who
What
When
Where
How

Other

Figure 7: Breakdown of F1 score according to question type

industry =
the are
‘ species |]
however 08 fauna 08
1837 0€
1951 and
in floral —
peaking 06 5150 06
prices which .
with of
: species -
flax 04 fauna
of 81,000 == 04
sale | | and
the flora ||
revenues 02 S
02
increased - more
enjoyed narbouring
island |] in
¥ B 2L 2T 5 B Y2 ey wie
ge6 58 8 2 £ 5 ¢ ¥ ¥ ® $ 8 2 &
a v £ 4 & 2 8 E 5 T ¢ £
g ® T 0 & & 2

Figure 8: Visualization of attention for a cor- Figure 9: Visualization of attention for a in-
rectly predicted questions correctly predicted question

during experimentation is that different question categories like "When”,”"Who”,”Where” have very
different types of answers.We believe that classifying questions into different categories and training
different models would help the model learn faster and produce better results.

REFERENCES

Junyoung Chung, Caglar Gulcehre, Kyunghyun Cho, and Yoshua Bengio. Gated feedback recurrent
neural networks. In International Conference on Machine Learning, pp. 2067-2075, 2015.

Alexis Conneau, Holger Schwenk, Loic Barrault, and Yann LeCun. Very deep convolutional net-
works for natural language processing. CoRR, abs/1606.01781, 2016. URL http://arxiv.
org/abs/1606.01781.

Mahak Gambhir and Vishal Gupta. Recent automatic text summarization techniques: a survey.
Artificial Intelligence Review, 47(1):1-66, 2017.

Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to
reason: End-to-end module networks for visual question answering. CoRR, abs/1704.05526, 3,
2017.

J. Lei Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. ArXiv e-prints, July 2016.
Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods in natural language

processing (EMNLP), pp. 1532-1543, 2014.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. CoRR, abs/1611.01603, 2016. URL http://arxiv.org/
abs/1611.01603.

Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
CoRR, abs/1608.07905, 2016. URL http://arxiv.org/abs/1608.07905.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriénboer, Armand
Joulin, and Tomas Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. arXiv preprint arXiv:1502.05698, 2015.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. CoRR, abs/1611.01604, 2016. URL http://arxiv.org/abs/1611.01604.

Yang Yu, Wei Zhang, Kazi Saidul Hasan, Mo Yu, Bing Xiang, and Bowen Zhou. End-to-end reading
comprehension with dynamic answer chunk ranking. CoRR, abs/1610.09996, 2016. URL http:
//arxiv.org/abs/1610.09996.

