Question answering on the SQuAD dataset with
bidirectional attention flow

Brahm Capoor Varun Nambikrishnan
Department of Symbolic Systems Department of Computer Science
brahm@stanford.edu varunl4@stanford.edu
Abstract

Our project tackles the challenging task of question answering, which must ac-
count for intricate dependencies between question and context. To tackle this
problem, we employed an RNN model using Bidirectional Attention Flow, GRU
Cells, Custom Feature Engineering and Intelligent Answer Span selection at test
time. Our model achieves an F1 score of 0.67 and an EM score of 0.56 on the test
set.

1 Introduction and dataset

Reading comprehension is an extremely difficult task for Artificial Intelligence systems. It relies
both upon comprehension of a passage of text, but frequently on background knowledge as well. The
SQuAD dataset 12 is a means of sidestepping some of these confounds by providing approximately
100,000 (context, question, answer) triples < ¢, g, a > such that a is an excerpt of ¢ that answers
q. Thus, the task of question answering is reduced to finding a span of words in c that answer the
question, rather than having to generate original answer text. Context paragraphs in SQuAD are
sourced from Wikipedia, and questions and ground truth answers are crowdsourced from Amazon
Mechanical Turk. Below is an example of such a triple:

Question: Why was Tesla returned to Gospic?

Context: On 24 March 1879, Tesla was returned to Gospic under police guard for not
having a residence permit. On 17 April 1879, Milutin Tesla died at the age of 60 after
contracting an unspecified illness (although some sources say that he died of a stroke).
During that year, Tesla taught a large class of students in his old school, Higher Real
Gymnasium, in Gospic.

Answer: not having a residence permit

Thus, the problem that a Question Answering system on the SQuAD dataset seeks to solve is iden-
tifying the location of the answer in the the context paragraph. Specifically, a model must output a
predicted beginning index and end index of the answer in the context.

Developing our model involved iteratively building on top of previous versions in response to limi-
tations we identified. Our processes of identifying and determining resolutions for these challenges
are outlined, as well as our results at various stages of the process, are found in section 4.

2 Background and related work

There has been a vast swathe of work regarding question answering on the SQuAD dataset, explor-
ing wide ranges of different model architectures and other techniques. We noticed no clear trend
in models that scored highly on the public leaderboard. This suggested to us that there was no
unambiguously correct strategy, and instead that any of a variety of approaches and improvements
could result in high performance. Of particular interest to us was Seo et al.’s paper on Bi-Directional
Attention Flow for Machine Comprehension ¥/, The paper proposes a modified attention layer
wherein instead of summarizing the context paragraph into a single feature vector, attention flows
both from context to question and question to context without early summarization, thereby reducing
the detrimental effects of information loss. Of additional interest was Chen et al.’s paper on Reading
Wikipedia to Answer Open-Domain Questions 4. Their model consists of additional features than
just word embeddings, including binary features as to whether or not the regular, lowercase and
lemmatized forms of the context words can be found in the question words. We employ a variant
of such features in our model, and additionally match question words to the context to enhance our
bidirectional attention flow.

3 Approach

3.1 Model architecture

Start index, End Index

;

Dense + Softmax | | Dense + Softmax
11 11

Query2Context and Attention

Output layer

Attention Flow
layer

T hy hz T hs T hy T Uy Um
Contextual

-— «— €neeenenaan >

GRU

embed layer

Word embed
layer
Custom input | . (=]] ==
features
Cq C2 C3 CN (o} am
L J L J
L] 1 L] 1
Context Query

Figure 1: Model Architecture

Our model consists of three main layers: An RNN contextual embed layer, an attention flow layer,
and an output layer. We describe each of these layers below.

In the RNN contextual embed layer, each context paragraph is represented by an N-length sequence
of word embeddings in R?, and each question is represented by an M-length sequence of embed-
dings, also in Rd. Embeddings are represented by the green boxes in Figure 1. The model — like
the baseline — uses GLoVe embeddings. While word2vec embeddings could also be used, GloVe
embeddings use global co-occurrence statistics and are also much faster to train than word2vec em-
beddings. We then concatenate additional input features (represented by the blue boxes in Figure 1)
to these embeddings, as discussed in Section 4.1. These embeddings are fed into a 1-layer bidirec-
tional RNN (using GRU cells) to provide forward and backward hidden states for both the context
and question. These hidden states are then concatenated to produce the context hidden states h; and
question hidden states u;, shown in pink in figure 1.

In the attention layer, we use bidirectional attention flow. This means that not only do the context
states attend to the question hidden states (like in basic attention implented in the baseline) but also
that the question hidden states attend to the context hidden states. Both these attentions are derived
from a similarity matrix, S, where S; ; represents the similarity between the i-th context word and
the j-th question word.

The final blended representation is a vector in R3" (where 2h is the dimension of a hidden state),
and is the concatenation of the following vectors:

1. context_hiddens (pink arrow in Figure 1)
2. c2g._attention_output (orange arrow in Figure 1)

3. context_hiddens % c2g.attention_output (yellow arrow in Figure 1)

4. context_hiddens * g2c_attention_output (dark green arrow in Figure 1)

where 3 and 4 are Hadamard products.

In the output layer, the blended representations are fed through a fully-connected (dense) ReLU
activation layer, and then a score is assigned to each context location using a downprojecting linear
layer. Lastly, the softmax layer creates a probability distribution accross the context locations. This
downprojection and softmax is done twice, to get probabilities for answer start position and answer
end position, respectively. In our model we choose the start and end positions s and e to maximize
the joint probability of p(s) x p(e), while meeting the condition that s < e < e + 15. The loss
function we use while training is the sum of cross entropy loss for the start and end locations.

4 Experiments

For all our experiments, we trained models for 14,000 iterations and recorded losses, F1 scores and
EM scores for both the train and dev sets.

4.1 Model development and Quantitative Results

We began with the baseline model provided in the starter code . The first layer is an bidirectional
GRU encoder layer that outputs context and query hidden states. These hidden states are fed into the
attention layer which uses basic dot product attention to produce blended representations. These are

then processed by the output layer which outputs a probability distribution over context logits. To
make a prediction, we take the argmax of each of these distributions to identify start and end indices
(1

While nothing was egregiously wrong with this architecture, its performance was at best mediocre:

Table 1: Baseline results

Loss | F1 Score | EM Score
Train | 3.92 | 0.62 0.53
Dev 4.69 | 0.40 0.28

Thus, we began modifying this architecture and examining the effects our improvements had on
model performance.

4.1.1 Bidirectional attention flow

In order to address these limitations, as well as to increase performance of our model, we modified
the attention layer to use bidirectional attention flow, as discussed in section 3. This led to significant
a boost in F1 and EM scores for both the train and dev sets:

Table 2: BIDAF results

Loss | F1 Score | EM Score
Train | 3.25 | 0.76 0.66
Dev 3.95 | 0.53 0.39

We also noticed that the loss for train and dev sets reduced far more quickly.

(a) Train loss

(b) Dev loss

Figure 2: BIDAF vs Baseline loss. BIDAF loss is Blue, Baseline loss is orange.

4.1.2 Augmented input features

Following the modifications to our attention layer, we turned our gaze to incorporating additional
input features. Taking a page from Chen et al.’s book, we theorized that the presence of context
words in the question was important information and so we consider two indicators:

1. fexacr: Whether a context word is found in the query

2. fiower: Whether the lowercase context word is found the query

Finally, we define a new feature f,,atcn = max(fezact, flower) and append it to our input context
vectors. We take the maximum of these two indicators instead of appending each as a separate
feature to avoid double-counting words that are lowercase and present in the query. Unlike Chen et
al., we also add a similar feature to our input question vectors where fe;qct and fiower both search
for forms of a question word in the query. These additional features also led to a reasonable increase
in performance:

Table 3: BIDAF with augmented features results

Loss | F1 Score | EM Score
Train | 2.99 | 0.81 0.71
Dev 3.46 | 0.59 0.45

In addition, this improvement also made loss for both train and dev sets decrease much quicker:

(b) Dev loss

Figure 3: BIDAF vs Bidaf with Augmented Features loss. BIDAF loss is Blue, Bidaf with Aug-
mented Features loss is red.

4.1.3 Replacing GRUs with LSTMs

Following this, we experimented with replacing the GRU cells in our encoder layer with LSTM
cells. Unfortunately, this did not prove fruitful and as a result of this lackluster performance, we
decided to revert to using GRU cells in the encoder layer.

Table 4: LSTM Cell results

Loss | F1 Score | EM Score
Train | 3.25 | 0.77 0.67
Dev 3.49 | 0.58 0.44

4.1.4 Intelligent Answer Span Prediction

The final significant improvement we made to our model was to use more intelligent answer span
selection, as discussed in section 3. This led to a slight boost in EM and F1 scores, at the expense of
increased loss:

Table 5: Intelligent Answer Span prediction

Loss | F1 Score | EM Score
Train | 3.20 | 0.81 0.7
Dev 3.55 | 0.61 0.46

4.1.5 Hyperparameter tuning

We noticed a significant discrepancy between test set results and dev set results, indicating that our
model was probably overfitting to the test set. To combat this, we experimented with various values
of dropout. Unfortunately, none of them seemed to address the overfitting issue, only marginally the
discrepencay between performance on the train and dev set. This issue might be addressed in future
work by experimenting with other hyperparameters such as regularization constants and learning
rate.

4.2 Qualitative Results and examples

Below we discuss two examples of our model incorrectly identifying an answer and discuss the
limitations they demonstrate and how we might resolve them.

4.2.1

CONTEXT: to remedy the causes of the fire , changes were made in the block ii
spacecraft and operational procedures , the most important of which were use of a
nitrogen/oxygen mixture instead of pure oxygen before and during launch , and re-
moval of flammable cabin and space suit materials . the block ii design already called
for replacement of the block i _plug-type_ hatch cover with a quick-release , outward
opening door . nasa discontinued the manned block i program , using the block i space-
craft only for unmanned saturn v flights . crew members would also exclusively wear
modified , fire-resistant block ii space suits , and would be designated by the block ii
titles , regardless of whether a Im was present on the flight or not .

QUESTION: what type of materials inside the cabin were removed to help prevent
more fire hazards in the future ?

TRUE ANSWER: flammable cabin and space suit materials

PREDICTED ANSWER: flammable

F1 SCORE: 0.286

EM SCORE: False

While our model is not strictly incorrect in answering the question, it does not identify the whole
answer. These imprecise boundaries are likely because the model predicts similar probabilities for
each of the words in the correct answer span, and so the final selection of end index is relatively
arbitrary. In addition ‘flammable’ is a reasonable answer to the question, which suggests the model
has learned to succinctly answer questions and dispense with further detail. In order to resolve the
first of these issues, we would incorporate Part-of-Speech tags into our input features. Using these
features, the model would likely learn that a single adjective is rarely the correct answer. It seems
far less trivial to address the second possible cause, and we are unsure if it would genuinely to lead
to better performance since some answers actually are this short.

4.2.2

CONTEXT: southern california is home to many major business districts . central busi-
ness districts (cbd) include downtown los angeles , downtown san diego , downtown
san bernardino , downtown bakersfield , south coast metro and downtown riverside .
QUESTION: what is the only district in the cbd to not have ”” downtown ” in it ’s name
9

TRUE ANSWER: south coast metro

PREDICTED ANSWER: central business districts

F1 SCORE: 0.000

EM SCORE: False

The model fails to answer this question correctly for two reasons. Firstly, we noticed that the model
generally struggled to find the answer when the answer was in a long list of candidates, indicating
that it likely assigns similar probabilities to each entity in the list. This question also requires some
more generalized reasoning than just semantic understanding. The first of these issues might be
resolved by the use of ensemble models, which would aggregate these differences in probability
and hopefully make the probability of the correct answer more pronounced, relative to the other
candidates. The second would likely only be solved by a drastically different model architecture, or
more human engineered features.

5 Conclusions and future work

This project was a fascinating way to engage with research into Deep Learning for Natural Language
Processing. Designing a model to best tackle the challenge and weighing all the necessary consid-
erations was a valuable way of understanding real-world contexts in which class material could be
applied. Our model presents an effective way to tackle the problem of Question Answering on the
SQuAD dataset, producing significantly better results than the baseline. However, it also presents
several intriguing opportunities for extension, both in the short and long term.

In the short term, some of the low hanging fruit we can grasp are to explore using additional input
features. For example, Chen et al. also incorporated lemmatized versions of context and query
words in their definition of f,,¢.x. In addition, they also incorporated Part of Speech tags, Named
Entity Recognition tags and normalized term frequency. As we discussed earlier, this might allow
our model to learn more sophisticated syntactic and semantic rules. In addition, we could experiment
with different ways to avoid overfitting, for instance by modifying our regularization techniques and
learning rate. Another hyperparameter we could tune is the size of our word embeddings. Most of
these changes could be made without drastically modifying our model architecture and would likely
lead to small but nontrivial improvements.

In the longer term, it would be worthwhile to consider different model architectures. For instance,
we toyed with the idea of introducing a character-level CNN to produce character embeddings, but
ultimately abandoned it due to time constraints. This would allow us to condition on internal word
structure (the morphology of words), handle out of vocabulary words better, and produce more
information dense embeddings when combined with the original word embeddings. In addition, we
could add more modeling layers to capture the interaction amongst context words, conditioned on
the query, since our contextual embedding layer operates independent of the query. Finally, we could
consider ensembling different models together and making a decision based on a majority vote to
reduce the likelihood of an anomalous answer being selected.

6 Acknowledgments

We would like to thank the instructors and course staff of CS 224N for organzing the class as well
as for their enthusiastic and thorough support, both on the project and throughout the quarter. In
addition, we’d like to thank Microsoft for providing computing resources.

7 References

[1] CS 224n Default Project Handout

[2] Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250, 2016.

[3] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[4] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051, 2017.

