Investigations in Question Answering Architectures

Patrick Cho Sudarshan Seshadri
Department of Computer Science Department of Computer Science
Stanford University Stanford University
Abstract

This paper implements a deep neural model for the Stanford Question Answering
Dataset (SQuAD). We experiment with various types of attention, from basic to
more complex models of attention. Our best model reaches an F1 score of 75.882
and an EM score of 65.698 on the test set.

1 Introduction

In a Question Answering (QA) task, a model is given a context and is asked to predict the answer to
a corresponding question. Such problems have gained popularity due to their diverse applications as
well as their contributions to natural language processing research. In tackling such tasks, models of
attention are used to focus on relevant portions of the context. Creating these models of attention re-
quires modeling the interaction between context and question. Deep neural models are employed in
such tasks to learn meaningful relationships between contexts and their corresponding questions. To
facilitate research in these topics, the Stanford NLP group created The Stanford Question Answer-
ing Dataset (SQuAD) [3]. This dataset consists of 100,000+ samples over 500+ articles of contexts,
questions, and the corresponding answers. Each answer is a subsequence of words in the context, so
the QA task can be simplified to predicting start and end indices of the answer within the context.

We compare various types of attention, including Basic Attention, Bidirectional Attention [4], and
Coattention [5]. These attention models are embedded in deep neural network architectures used to
perform answer prediction. We primarily model our architecture off of a simplified version of the
Bi-Directional Attention Flow (BiDAF) architecture [4].

2 Related Work

2.1 RNN Encoders

RNN encoders can be used to represent a variable length sequence by a fixed-length vector [1].
The encoder reads each symbol of the input sequence x sequentially, changing its hidden state after
each symbol. The output of an RNN encoder given z is the concatenation of the output of each
symbol in z. These outputs encode information about the temporal interactions between symbols in
z. Bidirectional RNN encoders perform this operation in two directions. The output of these two
directions are usually then concatenated to form a single output.

2.2 Basic Attention

One problem faced by traditional encoder frameworks is that the encoder can be forced to encode
information that is not necessarily relevant to the task at hand. For example, this problem can arise
if the input is long or otherwise information-rich. In the case of machine translation, there is a
certain alignment between the input and output text. This intuition inspires attention mechanisms
that address the above issue by allowing the encoder to refer to specific parts of the input sequence
[6] through attention. One basic form of attention for SQuAD models is as follows.

For a context hidden state c; (where g; represents question hidden states), the attention distribution
is

o = softmaz([cFq,...,cFqu]) € RM

We then use this attention distribution to produce the attention output a;, a weighted sum of the
question hidden states.

M
a; = Za;qj € R?"
i=1

This is a simple but effective model for attention. Recent work has produced many improvements to
this attention model.

2.3 Bidirectional Attention

An improvement over basic attention, Bidirectional Attention (BiDAF) [4] considers attention from
context to question, as in Basic Attention, but also question to context. Given the same context and
question hidden states c; and g;, respectively, we first compute a similarity matrix S € RN XM,
T
Sij = Weimlcis gj;ci0 gj] € R

where wgi,, € RO is a trainable weight vector. For the Context-to-Question (C2Q) attention, we
first find the attention distribution o*:

o = softmaz(S;.) € RM

and use this to calculate the C2Q attention outputs a;.

M

a; = Olej

j=1
Next, we perform Question-to-Context (Q2C) Attention. We first calculate

m; = max S;; € R
j

and use m to calculate the attention distribution 5 € R™ over context locations.
B = softmaz(m) € RN

We then calculate the Q2C attention outputs ¢’ as a weighted sum of the context hidden states.
d =) NBic; e R*"
i=1

Finally, the bidirectional attention output is, in general, some function of the context hidden states,
the C2Q attention output, and the Q2C attention output. Empirically, a good output b; is:

b = [ascioac;0d] €R™ Vie{l,...,N}

2.4 Coattention

Similarly to BiDAF, Coattention [5] expands on Basic Attention by producing both C2Q and Q2C
attention outputs. Given the same context and question hidden states c; and ¢;, we first compute
projected question hidden states ¢, . . ., ¢}, using a non-linear transformation:

q¢j =tanh(Wgq; +b) e R* Vje{1,...,M}

where W is a trainable weight matrix and b is a trainable bias vector. It is desirable to allow contexts
and questions to attend to none of the corresponding question or context hidden states, respectively.
Therefore, we add sentinel vectors cy € R2" and qé € R?" which are trainable vectors. Our new
context and question hidden states, respectively, are {ci,...,cn,cg} and {qj, ..., q};, gy} Now
we compute the affinity matrix L € ROVFDx(M+1)
and question hidden states.

which contains pairwise affinities for context

Lij = C?q; eR

We first use L to compute C2Q attention outputs a;.
ot = softmaz(L;.) € RM+1

M1
a; = g a;-q;- € R?!
Jj=1

Next, we use L to compute Q2C attention outputs b;.

B? = softmaz(L. ;) € RVt

N+1
bj = Z chz S RQh
i=1
We then use the C2Q attention distributions to take weighted sums of the Q2C attention outputs to
yield second-level attention outputs s;.

M+1 _
si= Y aibjeR Vie{l,...,N}

Jj=1

Finally, we use the second-level attention outputs and the first-level C2Q attention outputs and feed
them through a bidirectional RNN encoder. This gives us hidden states w;, the coattention encoding,
which is used as the overall output of the Coattention layer.

{ui,...,un} =06RNN{[s1;a1],...,[sn;an]})
3 Approach

To tackle the SQuAD problem, we use a simple version of the architecture used in the full BiDAF
architecture [4]. Our model consists of five layers, as pictured below.

Dense + Saftmax LSTM + Safimax
OQutput Layer
" A

t $ t
|

Modelling Layer t n 4+ A
| i
t L) . i
|

Basic Attention
Attention Layer Bidirecsanal Attensan B
Coattention
t) ‘ ‘
| |
Contextual N BN SR L . —

Embedding Layer . - 1 - -—1
1

Word Embedding l
Layer

Input

Figure 1: Overall Model architecture

1. Word Embedding Layer maps each word to a word vector using pretrained GloVe vectors.

2. Contextual Embedding Layer encodes the context and question into embedded hidden
states.

3. Attention Layer produces a set of question-aware feature vectors for each word in the
context. We experiment with Basic Attention, Bidirectional Attention, and Coattention.

4. Modeling Layer scans the context with RNN encoders given the attention output.

5. Output Layer provides the start and end index distributions to answer the given question.

3.1 Word Embedding Layer.

We have a pretrained word embedding matrix from GloVe, namely, E € RIVI*? where | V| is the
size of the vocabulary and d is the embed vector size. We fix d = 100 for our experiments. Given a
one-hot vector encoding = of some word w, we produce the embedded vector e,, = Ez.

3.2 Contextual Embedding Layer.

Our RNN Encoders are bidirectional encoders built on top of a Long Short-Term Memory Network
(LSTM) [2]. We represent the context with a sequence of word embeddings z1,...,zxy € RY,
and the question with a sequence of word embeddings v, ...,y € R? obtained from the word
embedding layer. We define N = 600 and M = 30 for all experiments. The RNN encoder is is
shared between the contexts and the questions. This is done to enhance the expressive power of the
encoder by leveraging shared representational power. Because the RNN Encoder is bidirectional,
we have encoded outputs for the forward and the backward directions. The produced encodings are:

{el. &, . e &}
{ﬁ?ﬁ?""m?m}

Concatenating the forward and backward directions gives us context hidden states:
ca=[c, &Gl eR? Vie{l...N}

and question hidden states
g =[q, G eR?" Vje{l...M}

where we define h = 200 for all experiments. Downstream of this layer, only the encoded context
and question hidden states are used; the context and question embeddings produced in the previous
layer are not used. Therefore, from GloVe we extract features at the word level, and through RNN
encoder, we capture higher level features, namely sentence level features.

3.3 Attention Layer.

We can use any of Basic Attention, Bidirectional Attention, and Coattention in this layer, whose
equations are described in Related Work. Let the output of the attention layer be g € R™V*!, where
N is the number of context hidden states, and [is the length of the attention output, which varies
with the type of attention used. We concatenate the context hidden states and the attention output g
to produce G € RV*(+2h)

3.4 Modeling Layer.

The blended representation G produced by the attention layer is passed to the modeling layer. The
output of this layer encodes interactions within the context given the question. We use L layers of
RNN encoders, implemented again as bi-directional LSTMs. For Basic and Bidrectional Attention,
we use L = 2, but for Coattention, which contains an RNN encoder within the attention layer, we
use L = 1. This maintains similar complexity between the different attention models.

The input of the first modeling layer is G, and the output is a matrix M € RNV*2h_ If there
is a second modeling layer, then the input to the second layer is M, and the output is a matrix
M? € RV*2h We refer the overall output of the Modeling Layer as M, regardless if it is actually
M* or M2

3.5 Output Layer.

The SQuAD task requires finding the start and end index of the answer to a question withing a
context. Therefore, there are two principle output distributions: the start index distribution p* and
the end index distribution p?. First, we obtain the start index distribution over the context by

= softmax(wg;,l) [G; M)

where w,,1 is a trainable weight vector. The end index distribution should be somewhat informed
by the start index distribution, as predict an end index lower than a corresponding start index would
result in a null answer. Therefore, to pass information from the start index to the end index, we pass
[p'; M] to another RNN encoder layer, again implemented by a bidirectional LSTM. This produces
output M¢™? € RNV*2h We then calculate the end index distribution by:

p? = softmaz(waz) [G; Me™?))
where w2y is a trainable weight vector.

Training: During training, the objective function is the sum of the cross-entropy loss for p! and
p?. Suppose @ is the set of trainable parameters of the overall model, there are 7" examples in a
batch, and y;} and y? are the true start and end indices, respectively, of the i-th answer. Then the loss
function we minimize is:

T
1
L(9) = T Zlog(P;g) + log(piz)

=1

Evaluation: For evaluation, we produce the start and end index (k,[) that maximizes p,lcpl2 subject
to k£ < [. This is computed in linear time with the following algorithm.

Algorithm 1 Maximize Span

1: procedure SPANMAXIMIZATION(p', p?)

2 BestEnds < [1,2,...,N]

3 for starte {N —1,N —2,...,1} do

4: if p?[BestEnds|start + 1]) > p*[start] then
5: BestEnds|start] <— BestEnds[start + 1]
6 JointProb <+ p' o p*|BestEnds|

7 k + argmazx(JointProb)

8 | < BestEnds|k]

9 return k, [

4 Experiments

4.1 Dataset

For training our experiments, we use 86k examples for our training set, and 10k examples for our
dev set, all taken from SQuAD. The data consists of contexts, questions, and the corresponding
answers.

4.2 Model configurations for experiments

For all models, we train with an Adam optimizer with a learning rate of 0.001. All RNN Encoders
have a dropout rate of 0.15. As stated in our approach, we use a GloVe embedding size of 100, a
maximum context length of 600, a maximum question length of 30, and a hidden size of 200 for all
RNN encoders.

We ran three principle experiments. In the first we use Basic Attention, in the second we use Bidi-
rectional Attention, and in the third we use Coattention. We also conducted hyperparameter tuning
on the hyperparameter that affected performance most: number of modeling layers.

(c) dev EM (d) dev F1

Figure 2: EM and F1 scores of three tested models on train and dev sets. All use two modeling
layers. Red: Basic; Blue: BiDir; Teal: Coattn.

e

(a) dev EM (b) dev F1

Figure 3: EM and F1 scores of three tested models on train and dev sets. All use Bidirectional
Attention. Orange: Zero modeling layers; Red: One modeling layer; Teal: Two modeling layers.

4.3 Quantitative Results

We note that all three models of attention attain comparable EM and F1 scores on the dev set.
In terms of computation time, basic attention trains the fastest while coattention takes significantly
longer to train. The computational time differences are expected as they coincide with the increasing
complexity of the models.

While the type of attention had little effect on performance, the number of LSTM layers affected
performance by a large margin. Increasing from zero to one modeling layer gave a performance
boost of about 0.2 in both EM and F1 scores. Increasing from one to two modeling layers gave a
further performance boost of about 0.01. Further additions of modeling layers gave little perfor-
mance boost and slowed down training significantly. Hence, we settled on two modeling layers in
our attention experiments.

We note that while the types of attention had a marginal effect on performance when there were two
modeling layers, the type of attention played a more important role when there were no modeling
layers. In particular, with no modeling layers, bidirectional attention achieved a dev set F1 score of
0.47, while basic attention only achieved a dev set F1 score of 0.44. These results suggest that the
addition of modeling layers diminishes the effect of more complex attention models.

4.4 Qualitative Results

We visualize some of the attention distributions from each of the three attention models. For each
example, the left hand side represents the C2Q distribution, and if present, the right hand side rep-
resents the Q2C distribution.

Table 1: EM and F1 scores for dev set official evaluation

Model Name EM F1

Basic 63.283 | 73.762
Bidirectional | 63.661 | 74.108
Coattn 62.649 | 73.547

the
most
important
mibutaries
i

o ;
el
2 %
: srasbou]
bel

o neckar
strasbourg

manmnedt

upper thine plain

(a) Basic (b) Bidirectional

how long s e upper thine plain 7

SNTL_ how bng & e upper rhine plain

(c) Coattention

Figure 4: Attention distribution for ”how long is the upper rhine plain?”

From this example for the question “how long is the upper rhine plain?”, we view a portion of the
attention distribution that we found insightful. As expected, words in the context strongly attend
to the same word in the question and vice-versa. It is also interesting to note that in Coattention,
the sentinel question word is the most frequently attended to. Interestingly, notice that in all three
attention models, all words in the phrases ”300 km long” and 40 km wide” attend to the word ’long”
in the question. Similarly, ”long” in the question attends to the same phrases ”300 km long” and
”40 km wide” in the context in bidirectional attention and coattention. These phrases are intuitively
useful to answer a question involving finding out how “long” something is.

From this example for the question ”how do students learn about the church?”, we again visualize
a portion of the attention distributions. In this example, we note that there are interesting relations
between words whose meanings are associated with each other. For example, “’classes” in the context
attends to and is attended to be “students” in the question. This is natural, as students and classes
usually go hand in hand. We also notice some deficiencies in our attention models. None of them
draw a strong relationship between “book” in the context and any of “’students” or “learn”, which
would appear to be very natural connections to make.

In both examples, we note that our Q2C distributions in bidirectional attention and coattention ap-
pear to strongly mimic the C2Q distributions. In particular, they both have the largest values between
words that are the same, and share the trends discussed in the above examples. These visualizations
may explain why we did not see a dramatic performance change when we swapped out different

methodist
church
directs
the

ocal
church

©

offer |

membership
preparation membership
o preparation
confirmation o
dlasses confirmation
o dasses
all o
al

people

do students learn about the church 7

(a) Basic (b) Bidirectional

methodist {
church

(c) Coattention

Figure 5: Attention distribution for "how do students learn about the church?”

types of attention. We suspect the change in the attention distributions may be more stark with a
more shallow model. In deep models, perhaps the affects of attention become washed out, as at-
tention is mainly important in informing the model where to focus between context and question.
On the other hand, if the model is sufficiently expressive, it may learn such relations even without
complex attention.

5 Conclusion

We compared three attention models of varying complexity within a deep neural model for a question
answering task. We found that although more complex attention does seem to marginally help our
model, the impact of complex attention models such as bidirectional attention and coattention over
basic attention is diminished as we deepen our architecture. Attention is important in helping reduce
the amount of relevant information that models have to process, thus making more efficient use of
downstream layers. However, increasing the number of downstream layers appears to somewhat
diminish the importance of complex attention. We do see modest improvements in bidirectional
attention over basic attention in terms of F1 and EM scores, but the improvement is not quite as
dramatic as we expected. For further work, we would like to shrink the size of each RNN layer as
well as the number in order to see if there is a more dramatic disparity between basic attention and
the more complex attention models.

6 Acknowledgements

Thank you to the CS224N staff for putting together a great project and for all the help during office
hours.

References

[1] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[2] Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[3] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ ques-
tions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[4] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional atten-
tion flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[5] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016.

[6] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent trends in deep
learning based natural language processing. arXiv preprint arXiv:1708.02709, 2017.

