Improving the Neural Dependency Parser
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Abstract

In this paper, we attempt to improve the neural dependency parser proposed by
Chen and Manning. We first experiment with several neural network architecture
and optimization techniques to achieve state-of-the-art performance. We then adopt
the DAGGER (Dataset Aggregation) algorithm to improve the training of the neural
dependency parser in the low-data regime. Finally, we experiment with training
the neural dependency parser directly via reinforcement learning using Deep-Q
Networks, removing the need for a supervised oracle.

1 Introduction

Dependency parsing is one of the central tasks in computational natural language processing. The
result of parsing is a syntactic representation of a sentence, which can be useful for several downstream
tasks such as machine translation, relation extraction and question answering. As a result, dependency
parsing has garnered significant interest in the last decade.

The first data-driven approaches to dependency parsing use the arc-standard system [1] and a support
vector machine to choose transitions [2]. A common non data-driven approach is using integer linear
programming [3].

In 2014, neural networks took over dependency parsing. Chen and Manning [4] proposed a depen-
dency parser that can parse more than 1000 sentences per second and achieves a 92.2 % unlabeled
attachment score on the Engligh Penn Treebank (PTB) dataset. They use the arc-standard system [1]
and a single-layer neural network that chooses actions based on the state of the parser. The neural
network takes as input word vectors of the adjacent words on the stack/buffer, and learned dense
representations of the parts of speech and dependencies. Their work is considered the state-of-the-art
linear time parser.

There is a tradeoff between speed and accuracy of a parser. On one end, the work by Chen and
Manning sacrifice accuracy by performing greedy parsing but their parser is linear time. On the
other end of the spectrum are methods that use beam search and graph-based parsers. Andor et
al. [5] use beam search to maintain multiple hypotheses and improve the UAS to 94.61 %. Other
work by Kiperwasser and Goldberg [6] and Dozat and Manning [7] use neural attention in graph-
based transition parsers. Kuncoro et al. [8] use recurrent neural network grammars to achieve the
state-of-the-art UAS of 95.8 %.

*Equal contribution.



Le and Fokkens [9] were the first to explore using reinforcement learning to fine-tune the neural
dependency parser. They found that the accuracy of Chen and Manning can be improved to 92.3 %
by fine-tuning the learned policy using an approximate policy gradient algorithm. This improvement
seems to be within the reported standard error, casting doubt on the validity of their claims. They
also did not experiment with training the parser with reinforcement learning from scratch, which we
believe is an experiment worth doing.

Acquiring labeled natural language data is a time-consuming and expensive task. Therefore, it is
important that the community develops data-efficient algorithms to avoid requiring large amounts of
labeled data. We will see that the performance of neural dependency parsing in the low-data regime
(10-10 000 samples) can be significantly improved by using an algorithm called DAGGER [10]. This
result has important implications for training neural dependency parsers on small datasets. We also
believe that DAGGER can be successfully applied to other natural language processing tasks.

2 Dependency Parsing

In this section, we describe the dependency parsing paradigm, the dataset used, and common
evaluation metrics. This section will also introduce notation used throughout the paper.

2.1 Transition-Based Dependency Parsing

Dependency parsing involves deriving the dependency structure of a sentence. There are many ways
to do this. One way, which we focus on here, is greedy transition-based parsing.

The arc standard system [1] is central to this approach. The arc-standard transition-based parser
starts with a stack S = [ROOT] initially consisting only of the “ROOT” token, a buffer B =
[wl, ..., wy] consisting of the words of the sentence, and a set of dependencies A = (. At each
step, the parser decides between three actions: SHIFT, Left-Arc, and Right-Arc. Assuming that
S = [ROOT, s1, ..., Sm—1, Sm) and B = [w1, ..., w,],

e SHIFT pops w; from B and appends it to .S.
e Left-Arc adds (s, Sm—1) to A and pops $;,,—1 from S.
e Right-Arc adds (8,1, $m) to A and pops s,, from S.

The parser is guaranteed to result in a dependency tree involving all words in the sentence and build
projective dependency trees. Projective dependency trees have no crossing dependency arcs when the
words are laid out in their linear order.

2.2 Neural Dependency Parsing

In order to choose between the three actions at each step, features are extracted based on the
elements in the stack, buffer, and list of dependencies (details are in [2]). These features are discrete,
representing words c,,, parts of speech c,os (POS), and dependencies cq.p. The features are then fed
as input to the following one-layer neural network (£, is the embedding matrix corresponding to
50-dimensional word vectors from [11], and E; and Es are trainable 50-dimensional embedding
matrices):
T = [Ewcwa Elcp057 E2Cdep]
h = relu(Wyix + by)
hq = dropout(z, d)
p = softmax(Uhg + b).

To train the network, first we generate training examples {(c;,¢;)}, from the training sentences

and their parse trees using a “shortest stack™ oracle. Then, the training objective is to minimize the
cross-entropy loss plus a ¢o-regularization term

= A
L(0) = —Zlogpti + 5||9||2-
=1

At test time, the parser chooses the action argmax; p; at each step.



Table 1: Performances of Different Neural Networks for Neural Dependency Parsing

Dropout Placement Hidden Size Number of Layers Test UAS

No Dropout 200 2 89.36
4 89.01

400 2 89.62

4 89.32

Last Layer 200 2 89.30
4 89.19

400 2 89.47

4 89.97

Every Other Layer 200 2 89.09
4 89.45

400 2 89.78

4 89.74

Every Layer 200 2 89.19
4 89.36

400 2 89.10

4 89.47

2.3 Dataset and Evaluation

We conduct our experiments on the English Penn Treebank (PTB) dataset. We follow the standard
splits of PTB. PTB has 39 832 labeled training sentences, 1700 dev sentences, and 2416 test sentences.
Parsers are evaluated based on the UAS, which calculates the percentage of correct dependencies
idenfied by the parser.

3 Improving Performance

The most common form of neural dependency parser simply employs imitation learning on a large
dataset of sentences with known parsing schemes, as discussed in the above sections. While teams
such as Chen and Manning [4] use a simple network containing only a single hidden layer in their
models, not many papers have analyzed the relative benefits of different network architectures. This
analysis could prove useful for future investigations into dependency parsing; choice of network
architecture can vary the final test UAS score greatly.

To investigate the effects of different structures of the network, we constructed a network similar
to the one described in Chen and Manning [4] with different dropout structures, hyperparameters,
and sizes/numbers of hidden layers. In addition to the changed variables, we use a constant learning
rate of 1 x 1073, a weight decay coefficient of 1 x 10~%, and a batch size of 2048 across 10 epochs.
Early stopping is employed to reduce overfitting of the training set.

We tested this base network with three different characteristics varied between 2 and 4 values for a
total of 16 networks. As seen in Table 1, we were able to reach a test UAS of just under 90 with the
parameters specified. The best networks tended to be deep and wide, with dropout either in just the
last layer, or every other layer.

4 Dataset Aggregation

The neural dependency parser is trained using the simplest form of imitation learning, behavioral
cloning. In behavioral cloning, a set of training examples labeled by an expert is gathered and the
policy is trained using supervised learning. Behavioral cloning suffers from compounding errors,
where at test time the algorithm makes a mistake, reaches a stack/buffer state it has not seen at train
time, and continues to make mistakes throughout the parsing. A theoretical analysis shows that the
number of mistakes grows quadratically in 7', the number of parsing steps [10].

However, there is a simple extension to behavioral cloning called Dataset Agreggation (DAGGER
) that can yield better performance and comes with theoretical guarantees. The basic premise of



Algorithm 1 DAGGER. II is the set of neural network policies. 7 is the oracle policy. Commonly,
fr=1land §; =0fori=2,...,N.
: D« 0.
: Initialize 771 to any policy in II.
:fort=1,...,Ndo
Let T, = ﬂiﬂ'* + (1 — ,Bz)ﬁ'z
Sample K trajectories using 7;
Get dataset D; = {(¢, 7*(c))} of visited states by ; and actions given by expert.
Aggregate datasets: D < D U D,;.
Train classifier 7,11 on D.
end for
return best 7r; on validation.
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Figure 1: Performance of DAGGER algorithm vs. bsehavioral cloning.

DAGGER is to aggregate the dataset used for supervised learning with sample paths of the current
policy labeled by the expert. This makes our dataset contain a set of inputs that the learned policy
will likely encounter at test time, thus solving the problem of compounding error propagation. The
steps required to carry out DAGGER are summarized in Algorithm 1.

We apply DAGGER to the task of training a neural dependency parser. The expert 7* is the oracle
that was defined in Section 2. Instead of sampling K trajectories, we apply the parser m; to all
sentences/parses in our initial dataset. We do not reinitialize the policy every iteration and instead use
the policy from the previous iteration.

We use a similar network to the one described in Chen and Manning [4]. We use two hidden layers
each of size 200 with rectified linear activations, dropout after each hidden layer of .5, and a weight
decay coefficient of 1 x 10~7. Each inner training iteration involves 100 epochs with a batch size
of 1024 and learning rate of 1 x 103 that is multiplied by 0.5 every 25 iterations. We run N = 5
DAGGER iterations.

To evaluate data efficiency, we varied the dataset size by taking the first n sentences in the training
data. We then trained the parser using behavioral cloning and DAGGER with early stopping on the
dev set, and evaluated their test UAS. Fig. 1 shows the results of this experiment. DAGGER is able to
improve the test UAS by as much as 6 % with only 10 training examples. However, as the training set
size increases, the benefit of DAGGER declines and suffers from decreasing marginal returns.



Algorithm 2 Deep-Q Network for Neural Dependency Parsing

1: Initialize replay memory D to capacity k - |Dsentences|
2: Initialize network parameters 6 and target network parameters 6~

3: Pre-process sentence and known dependencies S

4: fort=1,...,N do

5 Shuffle and partition .S into M equal partitions, Sy, S, ..., Sy

6: forp=1,...,M do

T Parse S, with network. With probability €, choose a random action when parsing
8 Store parse results by sentence {(sp.;, Gp.i, 'p,i; Sp,i+1) }i in Dy

9 Update replay memory D with D),

0

10: Sample parses Diyqin from D

i E h T If terminal s’
’ or each (s, @i, 7 Si41), compute y; = r; +ymaxy Q(s',a’|60~) Otherwise

12: Train with gradient descent to minimize (y; — Q(s;, a;|6))?

13: After every C' steps, update = < 70 + (1 — 7)0~

14: end for

15: end for

S Reinforcement Learning

Reinforcement learning is a promising method to train neural dependency parsers as it is inherently a
sequential decision making task. In the arc-standard system, there is a discrete set of (three) actions,
and the UAS can be used as a reward signal. Furthermore, reinforcement learning does not require
an oracle; all that is required is sentences and their gold parse trees. This paper focuses on applying
Deep-Q learning and Deep-Q networks (DQN), a model free Q-Learning approach using deep neural
networks by Mnih et al. [12], to training neural dependency parsers.

The original DQN application was the Arcade Learning Environment [13] and thus their algorithm as
stated had to be modified for the dependency parsing “environment”. Several modifications were
made that can be seen in Algorithm 2. In addition, in order to stabilize training, we augmented the
UAS reward with intermediate rewards. Furthermore, the final reward is the number of correctly
parsed dependencies. That way, the reward scales according to the sentence length and is not unfairly
decayed in longer sentences.

# Dependencies Correct If terminal s’
r(s,a,s') =<1 If performing a on s produces a correct dependency .
0 Otherwise
ey

In a DQN, the neural network acts as a value function approximator. The neural network takes as
input the current state and outputs a value for each action. During evaluation, the action is chosen as
a = argmax, Q(s,a). During training, the algorithm chooses a random action with probability € to
facilitate exploration. We decay € over the training period.

For reinforcement learning, we again use a similar network to the one described in Section 2.2. We
use one hidden layer of size 200 with a rectified linear activation, a learning rate of 5 x 10~4, and
another layer mapping from the hidden layer to a 1 x 3 vector representing the value for each action.
We use a discount rate of v = 0.9, an update parameter of 7 = 0.1, and update every C = 200
steps. The replay buffer parameter is initialized to k = 8, four new sentences are parsed during every
cycle of the inner loop, and 72 sentences are sampled every time for training. We call this learning
algorithm RL-Base. We constructed several RL-Base variations that are summarized in Table 2
along with their test UAS. Fig. 2 shows the dev UAS during training for the variations. These results
illustrate the importance of the reward function and reward propagation.

In order to develop a better understanding of development and test set performance, we extracted
several sample parses and compared them to the ground truth parses. We summarize a couple key
errors our parser makes. First, Fig. 3 depicts an example where the parser misses one critical SHIFT
operation. This one mistake can later cause a domino effect when parsing. Second, In Fig. 4, we
notice how local the parses are when compared to the ground truth parses. Our RL-Base parser is



Table 2: Test UAS for various RL models

Name Description Test UAS
RL-Base Base model 71.07
RL-ExtraHidden Adds an extra second hidden layer before output 71.50
RL-DropoutExplore Dropout during exploration for non-deterministic parsing 70.75
RL-PercentUAS Use UAS % instead of number of correct dependencies 56.46
RL-NoItermediate  No intermediate rewards applied 30.66
RL-HighDiscount Experiment with v = 0.999 66.37
0.7 1
0.6 1
0.5 1
2 0.4
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Figure 2: Dev set performance of various models during training.

capable of detecting clusters of dependencies in longer sentences, but it fails to discover dependencies
that span many words. Since this is a long sentence, future rewards are most likely impacted by
compounding discounts. This means that local and more immediate rewards take higher precedence.

6 Conclusion

We believed that augmenting neural dependency parsing with a reinforcement learning loss would
lead to a higher UAS. While revamping the imitation learning technique using DAGGER improved
the UAS in the low-data regime, we were not able to improve on the results of Chen and Manning

ROOT ROOT
A .
no , was n't black monday . no , was n’t black monday .

Figure 3: (Left) Parse from RL-Base; (right) ground truth dependencies.
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the administration has been trying to push the dollar lower ; the fed has been resisting .

ROOT

O AR AN TN

the administration has been trying to push the dollar lower ; the fed has been resisting .

Figure 4: (Top) Parse from RL-Base; (bottom) ground truth dependencies.

using reinforcement learning on the full dataset. We believe that the lackluster performance of
reinforcement learning could be because the DQN algorithm is ill-suited for generalization. The
DQN algorithm focuses on local intermediate rewards and fails successfully backpropagate future
rewards, especially for reward-less SHIFT operations, whereas a pure imitation learning approach
with regularization and knowledge of exactly when to perform what action is able to generalize. We
hope that our results are useful for future applications of reinforcement learning to statistical natural
language processing.
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