Reading Comprehension with SQuAD Dataset

Wei Kang
Codalab username: weikang

weikang@stanford.edu
CS224n Assignment #4, Winter 2018

Abstract

This paper summarizes the default final project for CS224n, Winter 2018. I imple-
mented the Bi-Directional Attention Flow model[2] with some changes to solve
the reading comprehension problem with Stanford SQuADI[1] dataset. With my
implementation, a single model achieve 76.124% in F1 score and 66.296 % in EM
score with the test set.

1 Introduction

Reading comprehension by machine is one of the most challenging tasks in Machine Learning and
Natural Language Understanding. In such tasks, a machine is given a context and a query, and
is required to predict the answer from the context. This problem has gained a lot of popularity
and attention in recently years because of the trend with neural network and deep learning. Deep
learning network makes it possible to model the interaction between context and query without a lot
of feature engineering work. Stanford Question Answering Dataset (SQuAD)[1] is a new reading
comprehension dataset that features a public leaderboard for all the submitted models. More details
about this dataset can be found here. In this paper, I present the model I built based on the BIDAF[2]
paper, and its experimentation and result with SQuAD dataset. At the end of the paper, I also did
the error analysis of my model and how future work can be done to improve it.

2 SQuAD Data Analysis

The SQuAD dataset was built from Wikipedia articles, and it contains more than 100,000 entries.
Understanding the dataset used in this problem is very important before designing and optimizing
models. Often times it can give us ideas regarding how to improve the model score based on the
data pattern. Here, I plot the sequence length distribution for the contexts, questions and answers in
the training data. As shown in the histograms in Figure 1, vast majority of the context length is less
then 400, question length less than 30, and answer length less than 12. These are hyper-parameters
we set in the modeling code to help the model performance and training efficiency.

3 Bi-Directional Attention Flow Model

In this section, I present the general architecture of the model I used in the final project, followed by
details of different layers of this deep neural network model, and how they interact with each other.

3.1 Model Layers

The overall model architecture is shown in the diagram in Figure 2. There’re mainly four layers in
the model. The purpose of each layer is described in detail below.

50000
10000 20000

40000
8000
30000
» 6000 00 ;
o 20000

2000 10000

00 200 30 400 00 600 700 5 1 15 20 25 30 35 4 5 01
engt

0 25 2
length ngth length

(a) Context length (b) Question length (c) Answer length

Figure 1: Context/Question/Answer length distribution

T Start T End
Ot Laver Dense + Softmax Dense + Softmax
m; m; -\ M
=
=
4 |
Modeling
Layer E le—— -
9
=
= * 7
L |
e g2 En
Att::::)n Q2C and C2Q Attention
Word & E
Contextual 4|
Embedding
Layer
: G & G, Q)
) Context Rl

Figure 2: BiDAF model architecture

Embedding Layer: This is the layer where context and query words are converted into embeddings.
We use GloVe[3] word embedding. Embeddings vectors with dimensionality of 100 are used in my
system implementation. The size of the vocabulary used for the embeddings is around 400,000.
From my experience, quite some words from the SQuAD dataset are still missing in this vocabulary.
The word embedding for contexts and questions are passed to a LSTM network to form the contex-
tual embedding. The output hidden states from the LSTM are the encoded representations for the
contexts and questions.

In addition to the GloVe embedding vector, I also added an additional “exact match” feature in the
context word embedding vector if the context word also appears in the query word. This is inspired
by the features used in the Dr QA paper[4]. This small feature turns out to be quite useful.

Bi-directional Attention Layer: The mechanism of the Bi-directional attention layer is exactly

same as the original BiDAF paper. A similarity matrix S € R(V*M) js ysed and the element of it is
defined as

Sij = W?‘é) [h; u; hou]

where h and u are context and question hidden states, w(g) € RS is a trainable weight vector, hou
is element-wise multiplication, [;] is vector concatenation.

Context-to-query attention is defined as weighted sum of question hidden states based on row-wise
attention distribution of S:

o = softmaz(S;,:) e RM Vie {1,..,N} €))
M

a;=) aiqgeR™ Vie{l,.. N} 2)
j=1

Query-to-context attention is defined as weighted sum of context hidden states based on the attention
distribution over context locations:

m; = maXSij eR Vie {17 ,N} 3)
J
B = softmaz(m) € RN 4
N
d =) Bic; e R*)
i=1

The final output from the modeling layer is denotated as G with G; = [¢;;a4;¢; 0 a;;5¢; 0 €] €
R3" Vi ¢ {1,..,N}

Modeling Layer: Three layers of LSTM are used for the modeling layer, which is a bit different
from the original BiDAF paper. The input of the modeling layer is G. The output of the modeling
layer is denotated as M with M; € R*" Vie {1,..,N}

Output Layer: The output layer is used to predict the start and end points of the answer span from
the context. Here I simply use the a downprojecting linear layer to map the vector to a singular value
for all context points. After that, a softmax is performed on these singular values to compute the
probability values of all the context points.

4 Training and Experimentation

Tensorflow is used to implement the BiDAF model. After the model implementation, the majority
of the time and efforts are spent on the model optimization, searching and tuning of various hyper-
parameters. Adam optimizer is used in the final implementation. Due to the time limits and lengthy
model training time, I didn’t get the chance to try out other optimizers to see if that can change the
training speed or results. This can be done in my future work. I also tried out GRU instead of LSTM
in the model, it seems LSTM gives us a little bit better result. So I stick with LSTM in the final
implementation.

4.1 Hyperparameters

During the model improvement process, I tried out the tuning of following hyper-parameters (the
parameter values I eventually decided to use are also specified in the table).

Table 1: Hyper-parameters and optimal values

Hyper-Param Purpose Chosen value
Context length | Sequence length of the context paragraph 400
Learning rate | Learning rate of the optimizer initial value 0.001
LR annealing | Learning rate annealing decaying to 0.96 for every 1000 steps
Dropout Dropout rate for the neural network Set to 0.25
Embedding size | Word Embedding size 100
Hidden size Hidden size of LSTM cell 100

Not all hyper-parameters tuning are successful as expected. In many cases, the model gives same
performance and learning result after the parameter adjustment. Such parameters includes “embed-
ding size”, ’hidden size”, etc. Because of these, we set these hyper-parameters values as small as
possible to speed up training process.

Hyper-parameter searching for the following did give me better performance results if proper values
are sets.

Learning Rate Annealing: Learning rate annealing or decay applies exponential decay to the learn-
ing rate during the learning process. It allows us to have big learning rate at the very beginning so
that we can have faster learning speed at the very beginning. What’s more important, it also allows
us to have a much smaller learning rate at late stage of the model training, as illustrated in Figure
3(b). This can help us to avoid the “’ping-pong” problem at the end, and enable the model to still
approach to the optima close to the end of valley.

In our case, our initial learning rate is 0.001, with the decay rate set at 0.96 with every 1000 steps,

Context Length: Context length tuning is also very important to the running time of our model
training. Longer context length requires larger memory, and it slows down learning speed. By
examining the data at the very beginning, it gives me a rough idea regarding the distribution of the
context length and I can safely set a limit for context length without sacrificing the model quality. In
this case, I set the context length to 400 based on the histogram distribution of the data set.

Dropout: Dropout rate play a critical to reduce overfitting in neural network. As we can see from
the Figure 3(a), when the dropout is set at 0.15, the F1 difference between training and dev can be
as big as 20 percent. After the dropout is raised to 0.25, the F1 difference between training and dev
is reduced to around 12 percent.

Dropout Effect Learning Rate Annealing Effect

— no Ir annealing
&b — Iramnealing |

dev loss
-
@«

—— dropout 0.15 train 35
~=- dropout 0.15 dev
—— dropout 0.25 train
--- dropout 0.25 dev

0 5000 10000 15000 20000 0 5000 10000 15000 20000 25000
iteration iteration

(a) Dropout Effect (b) Learning Rate Annealing Effect

Figure 3

4.2 Memory And Efficiency

In the provided baseline model, the batch size is set to 100. However, because of the huge memory
requirements by the similarity matrix computation in BiDAF model, I ran into many OOM (Out Of
Memory) issues. For example, for a batch size of 100, and context length 400, and question length
30, and embedding size 100, the matrix that need to be allocated from memory is in the size of
100 x 400 x 30 x 100.

Initially, I had to reduce the batch size to run the model, the penalty is that the model learning speed
is much slower with smaller batch size. The solution to this problem is that instead of using tf.tile
to create huge matrix before the subsequent computation, we can take advantage of the Tensorflow
broadcast functionality to do matrix operation. With broadcast, Tensorflow figures out how to
apply smaller item to much bigger item one by one, without allocating huge amount of memory
beforehand.

S Model Results and Analysis

My model achieves F1 score 74.845, EM score 64.626 on dev set; and F1 score 76.124, EM score
66.296 on test set. As shown in Table 2, the dev set result is quite close to the original BiDAF paper
implementation. The biggest difference between my model and the original BiDAF paper model is
that I didn’t use character level embedding data in the training. I also adjusted the original BiDAF
model in several aspects, such as span optimization, more LSTM layers, more input features, etc.
All these are done in an incremental way. Among them, ”span optimization” gave me the biggest
lift from the base BiDAF model. ”Exact match” feature from Dr QA paper[4] also gave a nice lift
considering this is actually a quite small input feature.

Table 2: Model results on dev set

Model Dev F1 Score | Dev EM score

Provided Baseline 43.738 34.674
BiDAF (Ours, no Ir annealing, single) 72.52 62.344
BiDAF (Ours, with Ir annealing added, single) 73.145 62.857
BiDAF (Ours, with span optimization added, single) 74.42 64.333
BiDAF (Ours, final with ”exact match” feature added, single) | 74.845 64.626
BiDAF[2] (reference implementation, single) 71.3 67.7

BiDAF[2] (reference implementation, ensemble) 80.7 72.6

5.1 Attention Distribution

Attention is an important mechanism in NLP to improve accuracy and relevancy nowadays. To
illustrate how attention is used to improve the result, I visualize the attention distribution in Figure
4 and Figure 5. As you can see in Figure 4 for the "Query to Context” attention value distribution,
highlighted areas normally means query words also appears in context.

For the same two cases in Figure 4, Figure 5 gives another illustration on the probability distribution
of attention, start position and end position after softmax is applied. Since the question contains “sir
pindar’s house”, the same words in the context get high attention probability. And the model is able
to locate c1600” as the correct answer although ”c1600” isn’t part of the vocabulary.

Sometimes, however, the model is not clever enough to capture the correct attention. For example,
in Figure 5(b), the model is doing a good job of capturing all the attentions for ’steam” related
terms, and its most attention was put on “’steam turbine device was described by..” since the exact
term “steam turbine” also appears in the question. However, the model fails to capture the attention
for 71629 (which is very close to the correct answer, and also appears in the query). Because of
this, the model made a wrong prediction.

Q2C att values for 'when is sir pindar 's house dated ?'

0 20 40 60 80 100 120 140 160

= ON W s Ww,

Q2C att values for 'who described a steam turbine in 1629 ?

Figure 4: Attention values illustration

Query to Context Attention Distribution

L 0.175
sir paul pinda 's house dated c1600 .

0.150

Start Probability Distribution
0.125
¢1600 0.075
End Probability Distribution 0.050
0.025

o

20 40 60 80 100 120 140 16

c1600

o

(a) Probability distribution for the question “when is sir pindar ’s house dated
9

Query to Context Attention Distribution

0.200

].-_ 0.175

4 * 4

’
steam powergd

| steam engine being steam turbine device was
| described by tagi al-din in 1551 steam digester 0.150
steam engine stretches and by giovanni branca in 1629
Start Probability Distribution 0.125
0.100
@Al giovanni 0.075
End Probability Distribution 0.050
0.025
0 20 40 60 80 100 120
al-din

branca

(b) Probability distribution for the question ”who described a steam turbine in
1629 ?” (Failed to capture attention for ”1629”)

Figure 5: Probability distribution after softmax

5.2 Error analysis

After the model is trained, I performed the error analysis with the prediction result on the dev
set. There’re many kinds of imperfect predictions made by the modle, and below are some typical
prediction errors.

Semantic meaning ambuigity: Sometimes there’s some subtleties in the semantic meaning between
difference entities in the context. For the following example, some people would although think
“northern mokotw” is the correct answer because “where” seems to be decorating it. However,
actually both "where” and “’northern mokotw” are decorating ’pole _mokotowskie_”. For this kind
of situation, introduction of syntactic structure into the model can help alleviate the problem.

Context: besides , within the city borders , there are also : pole _mokotowskie_ (a big park in the
northern mokotw , where was the first horse racetrack and then the airport) , park ujazdowski (close
to the sejm and john lennon street)

Question: where was the first horse racetrack located ?

True Answer: pole mokotowskie

Predicted Answer: northern mokotw

Emphasize too much on close words: For the following example, the model seems to emphasize
on “semptember 30, 1960 because it is very close to “abc”, while ”1960s” is several steps aways
from “family-oriented series” and more faraway from “abc”. If such situation happens quite often, it
is worthwhile to add more weight when both critical terms (in this case “abc” and “family-oriented
series”) appears in the same sentence.

Context: the 1960s would be marked by the rise of family-oriented series in an attempt by abc
to counterprogram its established competitors , but the decade was also marked by the network ’s
gradual transition to color . on september 30, 1960 , abc premiered the flintstones , another example
of counterprogramming ;

Question: when did abc begin making family-oriented series ?

True Answer: 1960s

Predicted Answer: september 30 , 1960

Attention on the wrong words: In this example, the model makes prediction for “continental
edison company in france” because it is so close to term “begin working”, which also appears in the
question. So the attention is much bigger here. However, based on our human understanding, it is
obviously wrong because this timeframe is not in 1984 at all. Model should be taught to honor the
time sequence in terms of event happening.

Context: in 1882 , tesla began working for the continental edison company in france , designing and
making improvements to electrical equipment . in june 1884 , he relocated to new york _city:57760_
where he was hired by thomas edison to work at his edison machine works on manhattan ’s lower
east side

Question: where did tesla begin working in 1884 ?

True Answer: edison machine works

Predicted Answer: continental edison company in france

Unable to place importance on adjective: In this example, from the syntactic point of view, the
model predicted answer is also correct. However, human being obviously care more on “negative”,
instead of “long-term”, which is much more neutral an adjective. So during model building, we can
also add some features regarding the sentiment or severity of the word.

Context: the report claimed that these noise levels would have a negative long-term impact on the
health of the city ’s residents .

Question: what type of impact can the residents of newcastle expect the city ’s noise to have on them
?

True Answer: negative

Predicted Answer: long-term

5.3 Error in Dataset

In the dev set, there’re also some labeling errors. For example in the following case, the model
actually makes a correct prediction. However, due to the obvious error in the labeled data set, the
correct prediction is marked as “wrong”.

Context: the american automobile association reported that in the last week of february 1974 , 20 %
of american gasoline stations had no fuel .

Question: according to the aaa , what is the percentage of the gas stations that ran out of gasoline ?
True Answer: last week of february 1974 ,

Predicted Answer: 20 %

6 Conclusion and Future Work

For this default final project assignment, I reimplemented the BiDAF algorithm in Tensorflow and
made some adjustments from the original paper. The model implementation achieves good result
on the class leaderboard. BiDAF is a very powerful attention mechanism in tackling the reading
comprehension problem. By integrating BiDAF into the class-provided baseline model, I instantly
achieved more than 20+% in F1 score. This shows the BiDAF is able to capture the complex word
interaction between contexts and questions. However, as I show in the “Error Analysis” section,
there’re still some cases where proper attention isn’t captured.

Due to the time limits of this default final project, not all of the ideas from the original BiDAF paper
were implemented. For example, I didn’t implement the character CNN mentioned in the original
paper. Since quite some words are not covered by the GLoVE vocabulary, I expect character CNN
can improve the final result if implemented. Some other hyper-parameter search, such as optimizer,
can be done to see if it can affect the training and reuslt. Also the teaching staff has provided a lot of
other advanced attention-related papers, and I didn’t get a chance to read many of them. I'd expect
an ensemble model integrating several attention mechanism can boost the final result.

Acknowlegements

I would like to thank Richard Socher and all the class TAs for a great class and project experience.
And I appreciate Microsoft for providing Azure GPU environment for us to experiment on powerful
GPU VMs.

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. CoRR, abs/1606.05250, 2016.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[3] Jeffrey Pennington, Richard Socher, and Christopher D Manning. GLoVe: Global vectors for word repre-
sentation.

[4] Dangi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading wikipedia to answer open-domain
questions. arXiv preprint arXiv:1704.00051, 2017.

