Question Answering on the SQuAD Dataset

Yongshang Wu, Hao Wang
Department of Computer Science
Stanford University
{wuy, wanghao}@stanford.edu

Abstract

Question answering (QA) is a challenging task in natural language processing,
where a complex modeling of the context and the question is necessary for high
quality prediction. In this project, we tackled the QA task on the SQuAD dataset.
We implemented and refined various techniques including char-level embedding,
gated dot attention, self-attention, multiplicative attention, pointer networks, span
selection with dynamic programming as well as ensemble models. As a result,
the final ensemble model achieved 77.89 F1 and 68.37 EM on the test set. The
visualization and error analysis further explained the effectiveness of our model.

1 Introduction

Question answering is a task where a system is required to predict a answer given a context and
a query. Such systems have many practical applications and the task is still a challenging topic in
the field of natural language processing. In order to obtain high quality prediction, a system should
model the complex relation between the context and the question by learning a large amount of data.

Stanford Question Answering Dataset (SQuAD) [1] is a recent question answering dataset with
more than 100,000 question-answer pairs and 500 articles. This project tackled the QA task on
the SQuUAD dataset. On the basis of a baseline model, we implemented improvements across all
layers, including char-level embedding, gated dot attention, self-attention, multiplicative attention,
pointer networks, span selection with dynamic programming as well as ensemble models. Our final
ensemble model achieved 77.89 F1 and 68.37 EM on the test set. We further conducted attention
visualization and error analysis to explained the effectiveness of our model.

2 Dataset Analysis

Context Length in Training Data Set Question Length in Training Data Set Answer Length in Training Data Set

16000 20000 50000

14000 17500
40000
12000 15000

10000 12500 30000

8000 10000
6000 7500 20000
4000 5000
10000
2000 2500

0 200 400 600 800 0 10 20 30 40 50 60 0 10 20 30 40
Length Length Length

(€)) (b) (©)

Figure 1: Length of (a) context, (b) question and (c) answer in the training dataset.

In order to get insights from the dataset, we analyzed the length of context, question and answer
before actual training (Figure 1). The histogram of length of contexts show that most of contexts
are shorter than 450 words. This discovery inspired us to limit the maximum context length of our
models, which reduced training time.

3 Method

3.1 Architecture Overview

[S s e s s e e 1
o . i
: Embeddings: context x, & questiony, i

Encoder : Deep Char-level
Layer] Encoder Embedding

Blended Representation * Gated Dot Attention
. » GatedDotAttn(v,k)
bt:blGRU (btfllvt) ::FullyConn(ot)*oLt

vt=GatedDotAttn (q; Ct) «0,=[k ,DotAttn(v, k)] *

Attention +
Layer a Self-Attention
S, =biGRU(s__,,u,)
u =GatedDotAttn (b, b)

i
1 Attention Outputs: s _ 1

N
- b e o - - + ______ J

Pointer Networks
hy=MulAttn(q,V) * Muliplicative Attention *
Ostart, pstartzMulAttn (s, hO) :I:uzlkAii]n(v,kt) £ :
Output | h,=GRU (h,, 0°*%t) L s e :
Layer 0®*?, pe*¥=MulAttn (s, h,)

Dynamic Programming

Spank:argmaxi 5 (pstarti*pendj) . l<j

Prediction
Layer T y

Ensemble Models
span=most_common (span,

<)

Figure 2: Architecture overview.

Based on a baseline model, we experimented various technique. Figure 2 summarized all techniques
we implemented, which can be organized into four layers: encoder layer, attention layer, output layer

and prediction layer. In the encoder layer, apart from the basic bidirectional GRU units, we tried
bi-GRU with deeper layers as well as character-level embeddings. In the attention layer, the simple
dot-product attention was replaced with a gated dot attention followed by self-attention. Pointer
networks were adopted in the output layer to condition end prediction on start prediction. In the
prediction layer, smart span selection with dynamic programming as well as ensemble models were
used to further improve performance of our models.

3.2 Encoder Layer

For each SQuAD example, the context is represented by a sequence of word embeddings

T1,T2,...,2xy € RY and the question by a sequence of word embeddings y1,ys,. ..,y €
R?. These embeddings are then fed into an encoder layer to produce new representations
ci1,¢a,...,cn € R q1.qo,...,qr € R?" that could integrate richer information of the con-

text they are in, where h is the hidden size of all the RNNs we use in our implementation. In this
section, different types of encoder layers experimented in our implementation are disccussed.

3.2.1 Bidirectional GRU

For bidirectional GRU [2] encoder, embeddings are fed into a shared-weight 1-layer bidirectional
gated recurrent unit network:

C; = biGRU(Ci_l,IZ')
¢; = biGRU(q;—1,¥:)

We simply concatenate the forward and backward hidden states to obtain the encoding of context
and question.

3.2.2 Deep Encoder

Based on bi-GRU encoder, we could stack more layers into the GRU to generate more complex
encodings.

M =biGRU(M |, Y 2;)

£ 1—1° %1
a" = biGRU(¢" ,, ')
forl =1,2,3

We use the depth-concatenated forward and backward hidden states to obtain the encoding of context
and question:
3,8,

qi = [Qz[S]’ qu]v qzm]

To prevent overfitting due to a deeper model, we also apply dropout on the deep encoder layer.

Ci:[

3.2.3 Character-level Embedding

Since the vocabulary size of embedding matrix is limited, out-of-vocabulary (OOV) words are of-
ten encountered. Instead of using fixed OOV embedding to represent these words, we could use
pretrained character-level embedding in addition to word embeddings to gain more expressive rep-
resentation. Following [3], we feed characters charfy, charf,, .. ., charj; of the i-th word in context
and chary, charl,, ..., charfj of the i-th word in question to a bidirectional GRU:

ch¢ = biGRU(chS_,, char?)

ch? = biGRU(ch?_,, char?)

We take the final hidden states of the bi-GRU as the character-level embedding of a word and con-
catenate it to the word embedding:

x; = |24, chf]
yi = [yi, chi]
before feeding embeddings into encoder layers mentioned in 3.2.1 and 3.2.2.

3.3 Attention Layer
3.3.1 Blended Representations

[3] proposed a gated attention-based recurrent network. [4] proposed generating sentence-pair
representation via soft-alignment of words in context and question using RNN. Similarly, we imple-
mented the context-to-question attention using gated attention. But in lieu of incorporating hidden
states in attention computing, we simply concatenate the attention output to the context encoding
and feed the blended representation into a bidirectional GRU. This simplification allows us to use
simple dot-product instead of additive attention used in [4] where there are two attention targets.
Such modification decreases the number of parameters drastically and reduces a significant amount
of computation. In a dot-product attention DotAttn(v, k), attention score e; € R for each value
v; € R? with respect to key k; € R? is calculated as follows:
e; = kg Uy

In a gated dot-product attention GatedDotAttn(v, k), the dot-product attention DotAttn(v, k) is first
computed, then the attention output for the ¢-th key, GatedDotAttn(v, k¢), is concatenated to the key
itself:

oy = [k¢, DotAttn(v, k¢)]

A fully connected layer with ReLu activation is afterwards applied on o, to compute the gate for this
particular output, the final output is the element-wise product of this gate and the blended output:

GatedDotAttn(v, k;) = FullyConn(o;) * ot

Given the context representation set ¢ and question representation set g, we first compute the gated
dot-product attention:

v = GatedDotAttn(g, c)

Then we feed the attention output into a bidirectional GRU:
by = biGRU(b;_1,v)

The forward and backward hidden states are concatenated to obtain the final blended representation.

3.3.2 Self-attention

[3] proposed directly matching the question-aware passage representation against itself to dynam-
ically collect and encode evidence from the whole passage into the passage representation. As in
3.3.1, the gated dot-product attention is used to match the blended passage representation to itself:

u = GatedDotAttn(b, b)
Again, the attention output is fed into a bidirectional GRU:
St = biGRU(St_l, ut)

and the final self-aware passage representation is obtained by concatenating forward and backward
hidden states.

3.4 Output Layer

3.4.1 Pointer Networks with Multiplicative Attention

We followed [5] and [3] and adopted pointer networks to predict probability distributions for the
start and end position of the answer. Similar to [3], we used an attention-pooling on the question
representation ¢ to generate a initial hidden state for the pointer network. However, unlike its orig-
inal implementation, our version used multiplicative attention instead of additive attention. This
change reduced the number of parameters in the models while kept flexibility of dimensions of in-
put matrices. In a multiplicative attention MulAttn(v, k), attention scores for the value is defined as
follows:

€;, = kt WUL‘ y

where k; € R4 isa key, v; € R is a value and W € R %42 jg 5 weight matrix.
Given the question representation ¢ and a random initialized parameter vector V' € R2", the pointer

network first computes a initial hidden state hy € R?":

ho = MulAttn(q,V).

Then a multiplicative attention is used to predict the probability distribution for the start position:
ot pstaTt — MulAttn(s, ho),

where the initial hidden state hg attends to output of the attention layer s and compute the probability
distribution p*2"t as well as the output o5t"¢,

Next, a GRU cell is employed to compute a new hidden state h; € R?":

hi = GRU(hg, 0***"").

end

Finally, by attending h; to s again, the probability distribution p"? as well as the output 0°"? of the

end position:

0, pend — MulAttn(s, hy).

With the hidden state i, we are able to conditioning end prediction on start prediction. Furthermore,
if the number of position is more than 2, we can simply add more hidden states in the GRU.

3.5 Prediction Layer

start jend start
l 16

The prediction layer computes final predicted spans (from p and p°?. The baseline
model simply takes the argmax over probability distributions to obtain predicted spans. In this
project, we improved the prediction layer with smart span selection and ensemble models.

3.5.1 Span Selection with Dynamic Programming

A straightforward improvement of the baseline prediction layer is conditioning /5?7 < [*"d e g,

start jend start end\ .
l , 1" = arg max; ;(p; * i), i < J.

In order to implement this method efficiently, we adopted a dynamic programming algorithm.
Specifically, we first compute p*ta7t:™%% a5 a cumulative max of p*t@"t. Then the max probabil-
ity product is found by:

start,mazx end)

max(p)

J

In this way, the conditioned span selection can be computed in linear time O(N).

3.5.2 Ensemble Models

We further implemented ensemble models, which is a common strategy for improving performance.
For the same context and question, the final span is the most common one in predicted spans from
K models.

4 Results and Analysis

4.1 Performance

| Model Embedding | Dataset F1 EM

1 | Baseline 100d Local Dev 40.13 | 29.10
2 | Char-level Embedding 100d Local Dev 40.19 | 29.47
3 | Deep Encoder 100d Local Dev 41.15 | 30.71
4 | Pointer Network 100d Local Dev 43.62 | 30.56
5 | Self-Attention 300d Local Dev 70.87 | 60.42
6 | Self-Attention + Pointer Network 300d Local Dev 72.08 | 61.49
7 | Self-Attention + PtrNet + DP 300d Codal.ab Test | 74.32 | 63.59
8 | Self-Attention + PtrNet + DP + 10 Ensemble | 300d CodaLab Test | 77.89 | 68.37

confrontational

Table 1: Performance of experiments.

Table 1 shows the experiments we conducted. Experiment 1 is the baseline model using a shared-
weight 1-layer encoder over 100-dimensional word embedding, vanilla dot-product context-to-
question attention and softmax output layer for predicting start and end position. Experiments 2,
3, 4 and 5 only change single control variable (one component) of the baseline model, as stated
by thier names. As we can see, self-attention boosts the performance on F1 and EM scores most
drastically. For experiment 6 and 7, we builds on the self-attention-based model by adding pointer
network and span selection with dynamic programming. At last, we run the best model (with self at-
tention, pointer network and DP-based span selection) with 10 different random seeds and combine
them into an ensemble model. The final CodaLab test leaderboard submission reports XXX F1 and
XXX EM. The changes we made on the hyperparameters when training best model are: context_len
from 600 to 450 and embedding_size from 100 to 300, while others remain default.

4.2 Attention Visualization

S~
g
NS
g 5 .
* < 12 7] (]
§ & § & 9% s F S
< 5 2 v < < & v S < Q
o .9 ko] [¥; o O & o S (]
v /] S5 S S o ¥ N G
S & G S & S o9 w SO o w2
g $§ & O ¢ o9 a5 oo &G 5 oY

type
of
discipline
?

Figure 4: Visualization of gated dot attention.

Figure 5: Visualization of self-attention.

Figure 3 is the visualization of gated dot-product context-to-question attention distribution on an
example, where the x-axis is the context and the y-axis is the question. In Figure 4 we zoom in
to the answer span for details of the distribution. As we can see, the answer “teachers and parents”
achieve much higher attention scores for the question word “who”, and same words or similar words
(e.g. “confrontational” and “assertive”) tend to have higher attention scores. This means the gated
dot attention could somehow discover and highlight the correlation of context and question.

Figure 5 is the visualization of self-attention distribution over an example. It is a bit hard to interpret
this relatively high-level attention, but by zooming into parts of the matrix we could still see that
the attention mechanism allows question-aware context to encode information of neighboring and/or
related representation.

4.3 Error Analysis

We pick several examples where our model failed, to gain a sense of how it may be further improved.

4.3.1 Example 1

e Context: before the st. elizabeth ’s flood (1421) , the meuse flowed just south of today ’s
line merwede-oude maas to the north sea and formed an archipelago-like estuary with waal
and lek . this system of numerous bays , estuary-like extended rivers , many islands and
constant changes of the coastline , is hard to imagine today . from 1421 to 1904 , the meuse
and waal merged further upstream at gorinchem to form merwede . for flood protection
reasons , the meuse was separated from the waal through a lock and diverted into a new
outlet called ” bergse maas ” , then amer and then flows into the former bay hollands diep .

e Question: where did the meuse flow before the flood ?
e Prediction: bay hollands diep

e Answer: merwede-oude maas

The question is where did the meuse flow before the flood but our model gives where it flowed
afterwards. This mistake may be caused by the high correlation between the words before our
prediction and the question, and this happens to occur at the end of the context while the true label
is at the beginning. So it is difficult for GRU to learn proper gate control to choose the early span
not the one at the end. Switching to LSTM with more complicated gates may be helpful.

4.3.2 Example 2

e Context: the centre-left australian labor party (alp) , the centre-right liberal party of
australia , the rural-based national party of australia , and the environmentalist australian

greens are victoria ’s main political parties . traditionally , labor is strongest in melbourne
’s working class western and northern suburbs , and the regional cities of ballarat , bendigo
and geelong . the liberals *° main support lies in melbourne ’s more affluent eastern and
outer suburbs , and some rural and regional centres . the nationals are strongest in victoria
’s north western and eastern rural regional areas . the greens , who won their first lower
house seats in 2014 , are strongest in inner melbourne .

e Question: what party is favored in bedigo and geelong ?
e Prediction: centre-left australian labor party

e Answer: labor

The prediction is correct to some extent since it selects out a reasonable answer span, which is not
too large and contains the true label. Adding POS features and analyzing syntactic structures of
prediction may help generate more precise answers.

5 Conclusion

In this paper, we implemented various techniques on the task of question answering in the SQuAD
dataset. The results showed the ensemble model with self-attention, pointer networks and span
selection with dynamic programming achieved high performance, comparing to the simple baseline
model. The analysis on attention visualization indicated the gated dot-product context-to-question
attention learned correlation between the context and the question, and the self-attention allowed the
question-aware context to encode neighboring information. One future work can be looking into the
minor improvement from the character-level embedding and the deep encoder. Another is adding
POS features and analyzing syntactic structures of prediction.

Acknowledgments

We would like to thank Richard Socher and all CAs for the excellent learning experience. We also
acknowledge Microsoft for providing GPU virtual machines on Azure and inspiring us with R-Net.

References

[1] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ ques-
tions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[2] Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[3] Natural Language Computing Group and Microsoft Research Asia. R-net: Machine reading
comprehension with self-matching networks. 2017.

[4] Tim Rocktischel, Edward Grefenstette, Karl Moritz Hermann, Tom4a§ Kocisky, and Phil Blun-
som. Reasoning about entailment with neural attention. arXiv preprint arXiv:1509.06664, 2015.

[5] Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer pointer.
CoRR, abs/1608.07905, 2016.

