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Abstract

Machine Comprehension has long been a desired goal for the machine learn-
ing community. In an effort to build such a Question Answering system, this
paper will describe a model that incorporates several approaches in deep learn-
ing, inspired by leading QA systems, to achieve fairly competitive F1 and Exact
Match (EM) scores when evaluated on the Stanford Question Answering Dataset
(SQuAD). In particular, this model employs Global Vectors or Word Represen-
tation (GloVE) pre-trained word embeddings augmented with a character-level
convolutional neural network (CNN) embedding layer; a bidirectional recurrent
neural network (RNN) composed of Gated Reccurent Units (GRUs) for question
and passage encoding; a bidirectional attention flow layer; a 2-layer bidirectional
RNN composed of Long-Short Term Memory Cells (LSTMs) for modeling; and
an output layer that uses the joint probability distribution of answer start and end
positions to find the optimal answer span.

1 Introduction

In his comprehensive 2013 paper, Christopher J.C. Burges, at the time a member of Microsoft Re-
search (MSR), states that “a machine comprehends a passage of text if, for any question regarding
that text that can be answered correctly by a majority of native speakers, that machine can provide
a string which those speakers would agree both answers that question, and does not contain infor-
mation irrelevant to that question.” [1] This challenge of utilizing a question-answering paradigm to
train and validate a machine’s reading comprehension abilities is at the center of this project.

To meet this challenge, we sought to design and construct a model that, when given a paragraph
and a corresponding question, is able to answer the question correctly. The model’s success in this
endeavor would thus parallel its ability to “understand” text that it is given. In particular, this model
is centered around the Stanford Question Answering Dataset (SQuAD). This dataset is composed
of paragraphs from Wikipedia, with its approximately one hundred thousand questions and answers
crowdsourced using Amazon Mechanical Turk, which is the field’s standard.

To help mitigate the cumbersome task of enumerating such possible dependencies and features, re-
current neural networks (RNN) have become a popular solution to such tasks due to their usefulness
in processing sequential data, as is the case with natural language. Our model uses many layers of
different types of neural networks and other techniques such as attention to identify answer can-
didates within the passages for a given question. The words themselves are represented as word
and character embeddings. The start and end indices for the ultimate answer span are identified by
building a joint probability distribution of the answer start and end positions and finding the span



that maximizes that probability. The specifics of the constructed model will be further explained in
later sections of this paper.

Our model improves upon a baseline model give to us by experimenting with ways to make each
of its layers more sophisticated. While not quite reaching the levels of performance of some other
existing SQuUAD systems, the model still performs fairly well.

2 Related Work

2.1 SQuAD

SQuAD, briefly mentioned in the introduction of this paper, is an interesting dataset in that it was not
designed to specifically test out reading comprehension, as it is defined by most other fields. Rather,
as noted by Yoav Goldberg, a lecturer at Bar Ilan University, SQuAD “was designed as a benchmark
for machine learning methods, and the human evaluation was performed to assess the quality of
the dataset, not the humans’ abilities.” [2] As such, it serves as a particularly suitable dataset for
the task of exploring this frontier of machine learning. Additionally, its unique characteristic of
having answers span across several words, not necessarily of a named-entity category, sets it apart
form other close-style queries. This places SQuAD firmly in open-domain question answering, with
special attention made to the diversity of answer types, the difficulty of questions, and the divergence
in syntax between questions and their corresponding answers.

2.2 Traditional Models

Traditionally, there are two major modern paradigms for question answering: IR-based question
answering and knowledge-based question answering. The former tends to focus on passage retrieval,
as is the case with SMART [3] and the works of Soubbotin et al [4], and Ravichandran et al [5].
The knowledge-based paradigm is grounded in natural language processing, and is often centered
around converting text input into formal, mathematical representations [6]. In the creation of the
aforementioned SQuAD, Rajpurkar et al implemented a logistic regression model with a wide range
of features. [7]. A number of issues presented themselves in this endeavor: the model’s success was
inversely proportional to the number of answer types and the divergence between the syntax of the
question and the sentence. This logistic regression model, as with many other traditional models,
is composed of approximately 180 million features. Despite this, its performance is significantly
worse than human performance, with an F1 score of 51.0% as opposed to the 86.8% achieved by
humans. This leaves ample room for improvement.

2.3 Deep Learning Models

To address this performance gap, as well as the complexity and inefficiency of these traditional
models, researchers have begun exploring the use of neural nets for question-answering tasks.

Yu et al [8] proposed the dynamic chunk reader (DCR), described as an “end to end neural reading
comprehension model that is able to extract and rank a set of answer candidates from a given doc-
ument to answer questions.” This model uses deep networks in order to learn better representations
for candidate answer spans. This addresses the problem of having features in the order of hundreds
of millions, as in the traditional model baseline. Additionally, the answers candidates are repre-
sented as titular chunks, rather than word-representations, in order to further differentiate among
candidates. DCR works in four steps: an encoder layer composed of a bidirectional RNN; an at-
tention layer to rank word relevance; a chunk representation layer to extract chunks from passages
and encode contextual information, and, finally, a ranker layer that scores chunk relevances with
a softmax layer. This model achieves a 71.0% F1 and 62.5% Exact Match score for the test set,
significantly higher than the traditional logistic regression model.

Wang et al [9] utilized a model whose architecture is based on match-LSTM and Pointer Net (Ptr-
Net) in order to complete this task. The match-LSTM system was originally developed for textual
entailment, but was adapted for SQuAD after the observation that many questions paraphrase sen-
tences from the passages. The Ptr-Net allows the model to generate answers composed of several



tokens from the passage itself. This end-to-end neural network achieves an F1 test score of 77.0%
and EM 67.9%.

The Bi-Directional Attention Flow (BiDAF) network was introduced by Seo et al [10] as a hierarchi-
cal multi-stage model for modeling context paragraph representations at different levels of granular-
ity. It uses a variety of different embeddings and attention flows in order to ensure its representation
of contexts are query-aware. There is particular emphasis on its attention layer, which allows in-
formation to flow through the modeling layer, reducing the information loss. By simplifying the
attention layer to be memory-less, it also distributes the work that needs to be done between both
the modeling and the attention layer. BIDAF outperforms all other SQuAD systems by achieving a
test F1 score of 81.1% and Exact Match score of 73.3%.

3 Approach

Our approach to the SQuAD channel incorporates a combination of the improvements from the
models presented in the previous section into the provided baseline model.

3.1 Provided Baseline

The provided baseline model is composed of three main layers. The RNN Encoder Layer encodes the
context passages and questions into hidden states by feeding pre-trained GloVe word embeddings
into a 1-layer shared bidirectional GRU RNN. The context hidden states attend to the question
hidden states in the attention layer by applying basic dot-product attention. The output layer feeds
the blended representations, composed of context hidden states concatenated with attention outputs,
into a fully connected layer and ReLU non-linearity. A score is then assigned to each context location
through downprojection, after which individual softmax layers are applied to compute probability
distributions for the start and end positions of the answer span. The loss function is the sum of
the cross-entropy loss for the start and end points. To predict answers, the model simply takes the
argmax over these start and end positions separately to obtain a span (start, end) given a passage
context and corresponding question. More detailed equations can be found in the default project
handout. [10]

3.2 Our Model’s Architecture

Our model augments the baseline by adding and editing both the layers and their corresponding
inputs. Figure 1 is a visual representation of this model. We also regularize our non-bias parameters
using L2 loss to avoid over-fitting.

3.3 Bidirectional attention flow

This layer substitutes the basic dot product attention included in the baseline. It allows attention to
flow in both directions: first, from context to query (C2Q), then from query to context (Q2C). Let
the context and question hidden states be c, ...,cx € R?" and qq, ..., qny € R?", respectively. At
the center of this of bidirectional attention is a similarity matrix, defined as S;; = f (ci, qj), where
f is a trainable scalar function of context and query representations representing a similarity score
between them. We used the same function as the original paper that introduce this method [11]:

T
Sij = f(ci7 q]) = wsim[ci; q;;C; © q]]
Then, C2Q attention outputs a; are calculated using the row-wise softmax of S:

o' = softmax(S;.) e RM Vie {1,..,N}
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M
a; = Zag-qj eR* Vie{l,..,N}
j=1

Q2C attention is similar except we first reduce the similarity into a vector taking its row-wise max:

m; = maXSij eR Vie {1,,N}
J
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Figure 1: Our model is composed of six main layers: a character embedding layer, a word embed-
ding layer, an encoding layer, an attention flow layer, a modeling layer, and an output layer.

B = softmax(m) € RY

M
d =) Bici e R

=1

The two attention outputs are combined and then concated with the context hiddens to form a
blended representations b; = [¢;; a;;¢; 0 a;;c;0c’] € R Vie {1,...,N}.

3.4 Modeling Layer

We then feed these blended representations into a two-layer bidirectional LSTM. This layer is similar
to the GRU enconding used on the context embeddings in that it captures the interactions between
context words. However, it is different in that it uses a different kind of RNN unit and that the inputs
at this point in the system are query-aware representations of the context word. The modeling output
matrix M € R2"*¥ (the LSTM outputs are of size h and there is one for each direction) has column
vectors that encode context words aware of the entire context paragraph and the query.

3.5 Output Layer

The input to the output layer is the blended representations concatenated with the modeling output.
Imagine each b; is a column vector in the matrix B € R3"*N_ Then, the probabilities of the start
and end positions are calculated similarly to the baseline method except with different inputs.

pStart — softmax(wgga¢[B; M]) and pend = softmax(wgnd [B; M?))

The weights wglaﬂ’ 'wgn d€ R'9% are trainable vectors and the softmax function here corresponds
to the Simple Softmax Layer provided in the baseline which consists of a fully connected (linear
transformation) layer and a masked softmax. We create M? by feeding M into yet another layer
of bidirectional LSTMs. During training, we’re optimizing the cross-entropy loss for the start and

end locations. At test time our system outputs an answer span by finding the indices (i, j) that

maximizes the product of p?tart and p]e_nd.



3.6 Character-level CNN

Our model augments this baseline embedding layer by incorporating a character-level convolutional
neural network (CNN). Thus, the model is better able to condition on morphology as well as handle
out-of-vocabulary words. In our CNN, filters slide over full rows of our word embedding matrix,
allowing us to learn the compositions of words.

Our character vocabulary is composed of the ASCII vocabulary, along with a PAD_ID and an
UNK_ID to handle padding and unknown characters. Unicode characters are converted into ASCII
characters. The context character embeddings and question character embeddings (e1, ..., ey, € R9)
are fed into a three-layer CNN with a ReLU activation function and default-initialized bias vector
in order to compute a sequence of hidden representations. Each of these hidden representations is
computed based on a window of characters centered at some position ¢. Our resulting final character
embedding for both question and contexts come from applying elementwise max-pooling to these
hidden variables, such that embchar (w) = max; h; € RY. We concatenate these embeddings to our
word embeddings to serve as hybrid representations for each word. This improvement was inspired
by the BiDAF paper [11].

4 Experiments

4.1 Evaluation Metrics

SQuAD provides three crowdsourced answers for each question. Due to the nature of this dataset,
we evaluate the performance of our model based on two metrics:

e Exact Match (EM): binary measure that represents whether the answer given by the system
matches the ground truth exactly.

e F1: harmonic mean of precision and recall.

We take the maximum of these two metrics between the three provided ground truth answers for a
given question. The final F1 and EM scores are the average of all the EM and F1 scores for questions
across the dataset.

4.2 Hyperparameters
4.2.1 Preventing Memory Exhaustion

The addition of our improvements to the baseline meant that there would be a significant increase in
the number of parameters. Thus, we had to decrease the values of a number of our hyperparameters
to ensure that our machines did not run out of memory during training.

We chose to reduce context_len from 600 to 300 after plotting a histogram of the lengths of
context passages in the dev set. This is due to the fact that only 1.69% of the context passages
exceed 300. In fact, 0.0058% of the context passages are of length or exceed 600 words. Thus, 300
is a much more reasonable maximum length to handle (Figure 3).

The batch_size was decreased through experimentation. We ran experiments with our model
starting with the default batch size of 100. If the model ran out of memory during training, we
decreased the batch size by 10. Often, models would run out of memory early in the training run.
Through this experimentation, we found that a batch size of 60 was the highest that our machines
could handle for training.

4.2.2 Preventing Overfitting

We did a few experiments to tune our regularization and dropout rates. Given more time, we would
have liked to tune these more. Our experiments resulted in us using a learning rate of 0.001, regu-
larization factor of 0.00001, and dropout rate of 0.2.
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Figure 2: 98.31% of all context passages within the dev set are of length 300 or less.

4.3 Overview of Experiment Results

The following figure is a brief summary of the performance we achieved throughout the experiments
we detail below. The table also provides some scores from the models from which we took inspira-
tion (BiDAF, DRQA, etc), as well as baseline measurements. These are the F1 and EM scores for
the dev set. Note that the BIDAF improvements we made include not only the attention layer but
the modeling and output layers. The bolded model is our final model. We include iteration numbers
when available.

Model F1 | EM iters
Human 91.2 | 82.3 N/A
Regression 51.0 | 40.0

BiDAF 81.1 | 73.3

DRQA 79.0 | 70.0

R-NET 83.7 | 76.7

Our Baseline 39.7 | 28.8 17k
Baseline + BiDAF 73.7 | 62.7 | 15.5k
Baseline + BiDAF + Self-Attention | 66.9 | 51.0 | 14.01k
Baseline + Features 547 | 40.3 | 9.42k
Baseline + BiDAF + CNN 74.0 | 63.1 | 38.5k
Baseline + BiDAF + Features 67.2 | 53.4 | 23.25k

We have charted the F1, EM, and Loss functions of our final model alongside those of the baseline
in the following figure.
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Figure 3: There is a clear improvement between our final model and the baseline, as indicated by
the steeper decrease and minimum in the loss function and the steeper increase and higher plateau
for the evaluation metrics.

4.4 Bidirectional Attention Flow

Substituting the Basic Attention provided in the baseline model with the BiDAF attention layer
gave a modest increase in the development metrics. The training evaluation metrics increased more



significantly and that led us to conclude that the model was overfitting and include L2 loss of non-
bias parameters. That improved the development numbers slightly. The modeling layer significantly
increased the development dataset performance (most of the improvement) shown in Fig. 3.

4.5 Self-Attention

We were able to implement the Self-Attention layer and plug it in between the bidirectional atten-
tion flow and modeling layers, similarly to what Microsoft researchers did for their R-Net model
[12]. We also made the encoding layer deeper by using three layers of GRUs instead of one. We
introduced this changed after implementing the BiDAF attention, modeling and output layers. It
decreased our performance. We did not have time to test this change independently and to tune its
hyperparameters. We suspect the performance decrease is actually because the model change and
the number of parameters increased which means that our use of the same hyperparameters became
very suboptimal in the new context.

4.6 Character-Level Convolutional Neural Network
4.6.1 Baseline

We conducted a number of experiments with our character embedding layer. The first two experi-
ments we conducted were built atop only the baseline model in order to see if a character-level CNN,
alone, would make a sizable difference. We initialized our character embeddings in two ways:

e Trainable, pre-trained vectors supplied by Max Woolf [13].
o Trainable, randomly initialized vectors

We used the default settings of a learning rate of 0.001. Interestingly,both of these options performed
approximately the same:

Experiment | Iterations | F1 Dev | EM Dev
Pre-trained 12k 37.6 26.4
Randomly Initialized 7k 36.9 26.1

Additionally, they showed little to no improvements to the original baseline. Due to the similarity
between these models, we have decided to present the associated graphs of these experiments in our
supplementary material.

4.6.2 BiDAF

Interestingly, it does appear that after implementing the bidirectional attention layer and the model-
ing layer, adding a character embedding actually does help. The increase in performance is only a
few percentage points, but such an increase did not seem to occur without these attention and mod-
eling changes. This is because this model learns out-of-vocabulary words better and the attention
layer is able to find slightly more meaningful patterns in the relationship between the questions and
contexts.

After looking at some example predictions, we made some interesting observations:

e Our model tended to predict answers that contained the correct answer but either added ex-
traneous words (“catholics and prohibited emigration” rather than prohibited emigration™)
or omitted words (“catholic” rather than “mostly catholic). This could be due to the fact
that the addition of character embeddings causes the model to learn and depend more on
morphology, and thus answer forms become more ambiguous: the answer is technically
correct, but not specific or general enough.

e It seemed to excel when questions were quantitative in nature ("How many major ice age
have occurred?” - six; "How many examination boards exist in India?” - 30). This could be
because of the brevity of the answers or the bidirectional attention flow layer has associated
meaningful relationships between “how many” questions and words composed of numbers
at the character level.



e Hardly any words were identified as unknown tokens. This is likely due to the robustness
of the GloVE vectors and the addition of character embeddings

4.7 Additional Input Features

For a context word ¢; we augmented our word embeddings with:

e Exact Match Per-Token Binary Features

— Exact Match: Whether ¢; is found exactly in the question. Since we are guaranteed
that the answer for the question is found in someway within the passage, this helps
with pattern matching.

— Lowercase Exact Match: Whether lowercase ¢; is found in the question. Syntactic
divergence between the question and answer means that we need to account for when
a word appears, but not in the exact same letter cases.

— Lemma Exact Match: Whether ¢;’s lemma form is found in the question. This also
accounts for syntactic divergence.

e Part of Speech Tagging: Its part of speech tag. This can help the model as different
question types tend to correspond to answers composed of tokens of a particular part of
speech.

e Normalized Term Frequency: Its normalized term frequency. This is calculated by count-
ing the number of times ¢; appears in the passage and normalizing it by the maximum term
frequency for any term in the passage. This helps the model learn the interaction between
“rarer” and often “more significant” words, questions, and stop words.

4.7.1 Baseline

We experienced a fairly significant increase in the performance of our model. The increase in F1 and
EM scores, 54.7% and 40.3%, compared to the baseline of 39.7% and 28.8%, suggests that feature
engineering can make a significant impact on performance.

We believe that this makes sense due to the nature of the dataset. Since SQUAD was designed such
that the answer to a question is always contained within the accompanying passage, this task of QA
task is essentially a pattern matching problem. By singling out features that aid in this task, we are
helping the model less“understand” the semantic meaning of the text, but instead find how syntax
and patterns between the question and context could point to an answer. It is akin to memorizing
how correct answers should look like versus understanding why they are correct.

4.7.2 BiDAF

Adding these features to the BiDAF model significantly increases the amount of time it takes for
the model to train and converge. Additionally, performance actually decreased. It may be that the
bidirectional attention flow does not work well in conjunction with these more robust representations
of words. Perhaps the associations that are being made change to be unhelpful. Or, it could also be
an issue with hyperparameters like regularization and learning rate. With additional time, we would
have liked to explore this area further.

5 Conclusion

We were surprised with the huge positive the effect that a more sophisticated bidirectional attention
layer coupled with re-encoding of the blended representations had on our model’s performance.
The fact that the character embeddings helped little and that self-attention and additional features
hurt our performance at first puzzled us. But upon further inspection, that makes sense given the
itemized analyses in the experiments section above. Given more time to improve this model, we
would probably systematize our hyperparameter search to tune the model better and try to integrate
the self-attention layer and some additional features (especially ones that are more lightweight) by
trying out different overall model sizes and a different balance of sizes between the different layers.
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