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Abstract

In this project we propose a model that generates the name of a playlist given in-
formation about its tracklist. We first use a standard sequence-to-sequence model
with unidirectional single-layer LSTM cells for both the encoder and the decoder
and GloVe embedding initialization. We then add drop-out for regularization and
introduce an attention mechanism to establish alternative connections between rel-
evant words in song titles and playlist names. Finally, we provide an interactive
console that generates playlist name suggestions given an input tracklist, which
could serve as a useful automated suggestion system for digital music services
users.

1 Introduction

Coming up with an original and catchy title for a playlist is most definitely a challenging task. In
this project we propose a neural model dedicated to making the name search easier for those in
the hunt for the perfect playlist title. In particular, we attempt to construct a network that builds
an internal representation of the names of the tracks included in a playlist and then uses natural
language techniques to generate a title that could be close to what a human might devise.

Generating a playlist name is somewhow related to the task of creating a condensed representation
of an input text; that is, to the task of summarization. Specifically, this problem is similar to ab-
stractive summarization, as a title generally captures the gist of a playlist without explicitly using
segments of the song titles included in it, as an extractive method does. We hence approach this
problem through a neural sequence-to-sequence model, the most viable and promising approach
for abstractive summarization available at present. These models, first introduced by Sutskever et
al. [1], typically use an LSTM cell to map an input sequence to a vector of fixed dimensionality and
then another LSTM to decode the target sequence from the vector. They have proven successful in
a variety of tasks such as machine translation, question answering, bot interaction, and automatic
summarization.

There are numerous challenges to overcome in this project. In particular, it is hard to quantify how
well a title conveys the relevant information of a playlist, aspects of which may not appear in the
input text. Furthermore, deciding whether a playlist name is “good” is a highly subjective task that
is difficult even for humans, so coming up with a good automatic evaluation metric is particularly
challenging. To evaluate the final performance of our model, we use both a quantitative measure,
namely the ROUGE score, as proposed in NITS’s annual Document Understanding Conferences [2],
and a qualitative one, namely the analysis of example results.

The rest of the paper is organized as follows. In Section 2 we discuss relevant literature for this
project. In particular, we provide a brief review on previous work in sequence-to-sequence models
for abstractive summarization. We note, however, that, to our knowledge, no one has ever proposed



the specific task of generating playlist titles using neural natural language processing techniques.
In Section 3, we delineate the architecture of our standard and extended neural models. We then
describe and analize our dataset and summarize our experimental results in Section 4. We show that
our approach yields in human-like and creative results for most input playlists. Finally, we conclude
the project with ideas for future work in Section 5.

2 Background

Automatic summarization refers to the process of creating a condensed, fluent, and accurate repre-
sentation of an original input text using natural language processing techniques. While this problem
has long been a research topic of great interest in computer science, in recent years this interest
has spiked due to an increase in availability of text data from a variety of sources, including a huge
amount of online articles and documents. There are two general approaches for this problem: extrac-
tion and abstraction. Extractive methods work by assembling summaries from important sections
taken verbatim from the source text; meanwhile, abstractive methods, which will be our main focus,
aim to convey relevant information by generating novel words and phrases which may or may not
appear in the source text [3].

In 2015, Rush et al. [4] proposed a local attention-based model that generates each word of the
summary conditioned on an input sentence. Their model achieved significant performance gains on
the DUC-2004 evaluation dataset, consisting of 500 document-summary pairs. Nallapati et al. [5]
modeled abstractive text summarization using attentional encoder-decoder RNNs in 2016 and out-
performed several state-of-the-art results on two different datasets: the DUC-2004 corpus and the
CNN/Daily Mail corpus. Finally, See et al. [6] proposed an extension to the standard sequence-to-
sequence architecture for abstractive text summarization in 2017. Their model tackled two short-
comings of the standard architecture by introducing the use of a hybrid pointer generator network
to aid in the liable reproduction of factual details and coverage to discourage repetition. They out-
performed the current abstractive state-of-the art by over 2 ROUGE points in the CNN/Daily Mail
dataset.

Text summarization is without a doubt a non-trivial task for computers, since this process implies
the use of human knowledge and language capability, both of which computers lack. While a lot of
progress has been made in this area with the recent success of neural models and other data driven
approaches, this remains a very challenging task and attaining high levels of abstraction remains an
open research question.

3 Methods

In this section we describe our standard baseline sequence-to-sequence model, the regularized ver-
sion using dropout, and the extended attention-based model, modeled off the attention mechanism
introduced by Bahdanau et al. in 2015 [7].

3.1 Standard sequence-to-sequence model

Our baseline model, depicted in Figure 3.1, is similar to that presented by Luong et al. [8] in their
Neural Machine Translation (seq2seq) Tutorial.

We start by tokenizing the words in the song names of our playlists and their corresponding titles
into a sequence of tokens which roughly correspond to words. We will represent the tokens of the
tracklist of each playlist as a sequence of integers

Z1,T2,y...TT

where T is the arbitrary input length, each 0 < z; < |V is the index of a token in the vocabulary,
and |V/| is the vocabulary size. The top |V'| most frequent tokens in our data are treated as unique,
while all other are converted to an “unknown” token and get the same embedding.

These tokens are fed into the encoder (a single-layer unidirectional LSTM), who looks for the cor-
responding word representations £, in the embedding matrix £ € RIVI*4 (embedding layer) and
then uses them as input to produce a sequence of hidden states hi, ho, ..., hy.
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Figure 1: Standard sequence-to-sequence
network architecture at train time. During
training, the decoder receives as input the se-
quence of tokens in the target playlist name
with an additional start-of-sentence token ap-
pended on the right. Here, ‘<s>’ marks the
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Figure 2: Standard sequence-to-sequence
network architecture at test time. Here, the
decoder is initially fed a starting symbol to
indicate the start of the decoding process;
subsequently, its own output is fed as its next
step’s input. The process continues until the
end-of-sentence marker is produced or we

tells the decoder to stop. reach the maximum number of iterations.

On each step ¢, the decoder (also a single-layer unidirectional LSTM) receives the last hidden state
of the encoder h; and the word token of the previous word (the previous word of the target playlist
title during training, the previous word emitted greedily by the decoder during test time). The
decoder then looks up the corresponding embedding and uses it as input along with the encoding
of the source tracklist to generate a hidden state s;, which it then transforms into a logit vector of
dimension |V| (projection layer). Finally, the decoder produces a playlist title conditioned on the
encoding of its tracklist by finding the maximum logit value of its outputs at each time step.

During training, the loss function is a weighted softmax cross-entropy loss, where the weights are
used to mask padding positions outside of the target sequence lengths with values of zero. In partic-
ular, at each timestep ¢,

J®D(6) = —log(P(y))

where y; is the target token at that timestep and P is the probability distribution produced by the
decoder over all words in the vocabulary; meanwhile, the overall loss for the whole playlist title is
given by

1
0) = i tEOm JYW (0

where m(*) is a masking vector which is 1 for all ¢ < T* and 0 for all ¢ > T* where T* is the length
of the target sequence and M is the maximum output length.

3.2 Regularized sequence-to-sequence model

This model is identical to the standard sequence-to-sequence network described in Section 3.1, ex-
cept that we additionally regularize our network by applying Dropout [9] to avoid overfitting. This
process amounts to creating an ensemble of smaller networks that share the same weights.

We drop the same network units (inputs, outputs, and recurrent connection) at each time step to avoid
an aggregation of the dropout masks that could amplify the noise and drown down the signal of our
input, as suggested by Gal et al. [10]. At test time, all neurons are kept to combine all the smaller
networks into a single one and the activationas are scaled by the dropout probability to ensure the
expected value is the same as the actual output.



3.3 Attentional sequence-to-sequence model
We introduce an attention mechanism to our original sequence-to-sequence network, which relieves

the encoder from the burden of having to encode all information in the source sequence into a fixed
length vector [7] by allowing the decoder a glimpse into the hidden states of the encoder.
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Figure 3: Toy attention visualization. Darker tones denote higher attention score.

The attention distribution is calculated as follows:
egt) = v, tanh(Wyih; + Was;)
d® = softmax(e®),

where v,, W1, and W5 are learnable parameters. This attention distribution is then used to produce
the context vector c;, a linear combination of the source hidden states

Ct = Z dgt) hz

Finally, the context vector is combined with the current target hidden state to yield the final attention
vector
ay = f(Ct, ht) = tanh(WC[ct; ht]),

which is fed as an input to the next time step.

We try two variants of this attentional model, one with a unidirectional RNN and the other with a
bidirectional RNN for the encoder.

4 Experiments

In this section we: (1) describe the dataset used for our experiments along with some exploratory
analysis on coverage, (2) report the choice of final vocabulary used in our model, (3) delineate the
model configuration of our experiments, (4) describe the metrics used for performance evaluation,
and (5) layout our final results.

4.1 Dataset and Vocabulary

We evaluate our proposed models on the Million Playlist Dataset!, recently released by Spotify as
part of its 2018 RecSys Challenge. It comprises a set of 1,000, 000 playlists that have been created
by Spotify users along with a variety of features, including playlist name, description, timestamp
when the playlist was last updated, and an array of information about each track in the playlist
(track name, artist, album name, duration, and position in the playlist). To simplify our analysis, we
work only with playlist names and their corresponding tracklist.

4.1.1 Summary Statistics and Coverage

There are 92, 944 unique titles among our playlists. Tables 1 and 2 show the top playlist titles and
tracks with their corresponding count in the full dataset, prior to any processing.

We analyze the word coverage of our dataset to decide the size of our vocabulary. As shown in
Table 3, we find that the top 20, 000 most frequent words account for over 98% of all the words in

'Official website hosted at https://recsys-challenge.spotify.com



Playlist name Count (K) Song name and artist Count (K)

Country 10 HUMBLE. by Kendrick Lamar  46.6
Chill 10 One Dance by Drake 43.4
Rap 8.5 Broccoli (feat. Lil Yachty) by DRAM  41.3
Workout 8.5 Closer by The Chainsmokers 41.1
Oldies 8.1 Congratulations by Post Malone  40.0
Christmas 8.0 Caroline by Amin  35.2
Rock 6.8 iSpy (feat. Lil Yachty) by KYLE 35.1
Party 6.2 Bad and Boujee (feat. Lil Uzi Vert) by Migos 35.0
Throwback 5.9 Location by Khalid 35.0
Jams 5.1 XO TOUR LIif3 by Lil Uzi Vert 34.9

Table 1: Top playlist names Table 2: Top tracks

the dataset, including words in the tracklists and playlist names. We hence decide to treat only the
top |V| = 20, 000 of words as unique and convert all other words to an unknown token.

We then filter out playlists with unknown tokens in their title, after which we are left with a total of
885, 303 playlist name-tracklist pairs. We split our dataset into train, validation, and test sets using
an 85% — 15% — 5% split, which yields in 708,243 training pairs, 132,795 validation pairs, and
44, 265 test pairs.

Top k words Coverage Top £ titles Coverage

#words (M) % #playlists (K) %

1,000 166.8 73.8 1 10.0 1.6
5,000 207.6 91.8 10 77.1 13.0
10,000 217.1 96.0 20 119.6 20.2
20,000 221.1 98.2 50 193.1 32.6
30,000 223.7 99.0 100 255.2 43.1
Table 3: Word coverage Table 4: 1-word playlist title coverage

Table 4 shows the playlist coverage of the top 100 playlist names; that is, the percentage of total
playlists with one-word names in the top 100 playlist titles. We conclude that there is enough
variation in our targets not to treat this problem as a classification task. However, for completeness,
we ran a BOW model, a logistic regression, and an LSTM model with an additional soft-max layer
to classify the 119, 573 playlists with single-word names in the top 20 titles. These models yielded in
accuracies of 0.564, 0.546, and 0.547, respectively. All of these accuracies are significantly higher
than the 0.01 accuracy that a majority-vote model (predicting the top title Country for all playlists)
would have resulted on. We can hence conclude there is enough signal in our input data achieve a
good performance on our title generating task.

Finally, the mean number of words our tracklists is 224.9, while the number of words in the playlist
titles ranges from 1 to 14, with around 63% of the playlist having single-word titles and over 99%
less than 5 words in their title. We will use this information to decide the maximum input and output
sequence lengths in our models.

4.2 Experiment Setup

We implemented our model using Tensorflow [11]. For all our experiments, our model has 256-
dimensional hidden states and 100-dimensional word embeddings. We tokenize using the PTBTok-
enizer provided by the Stanford Natural Language Processing Group. We use pretrained GloVe [12]
vectors to initialize our word embeddings and treat them as trainable parameters in our model. We
train using Adam with learning rate 0.0025. For our standard sequence-to-sequence model, we also
try learning rates of 0.001 and 0.005. We use gradient clipping with a maximum gradient norm of 5.
In the regularized version of our model, we use drop probability of 0.2. In all our other models we



do not use any form of regularization, but we use ROUGE in the validation set to implement early
stopping.

During training and at test time we truncate the tracklist length to 200 tokens and limit the playlist
name to 6 tokens (including the start- and end-of-sentence tokens for the decoder inputs and targets).
We chose these values based on the summary statistics presented in Section 4.1.1.

We train our baseline sequence-to-sequence model and the regularized model for a limit of 25 epochs
and our final attentional models for a limit of 30 epochs. Training of our final model took 24 hours
on a Tesla M60 GPU with batch size of 64. At test time our playlist titles are produced using Greedy
decoding.

4.3 Evaluation Metrics

We evaluate our model reporting the F; scores for ROUGE?-2, which corresponds to bi-gram over-
lap between the titles generated by our model and the true labels of our test dataset. We obtain our
ROUGE scores using Google’s implementation found here [13].

Since this metric could lead to bad scores for creative titles and due to the high subjectivity of this
task, we also provide a qualitative analysis of example title names produced by our models.

4.4 Results

In this section we: (1) describe the tuning process that lead to our final learning rate choice, (2)
provide a quantitative assessment of our experimental results based on the metric presented in Sec-
tion 4.3, and (3) lay out a qualitative evaluation of our models through the analysis of the titles
generated for the playlists in our test set.

4.4.1 Initial hyper-parameter tuning

We run our standard sequence-to-sequence architecture decribed in Section 3.1 for different values
for the learning rate, namely n € {0.001,0.0025,0.005}. Figure 4 shows the corresponding train
and validation ROUGE-2 curves.

Figure 4: Train and validation I} scores for 2-ROUGE for different learning rates
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We observe that 7 = 0.005 is too high, since the training ROUGE plateaus at a low value of ap-
proximately 0.25. On the other hand, we see that the training ROUGE increases roughly linearly for
the first 15 epochs with 7 = 0.001 and then plateaus, which suggests this learning rate is too small.
Meanwhile, when = 0.0025%, the shape of the training ROUGE exhibits roughly logarithmic
growth.

>The acronym ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation.
3Note that we ran this model for five extra epochs to allow the train loss to plateau.



Further, the gap between the training and validation ROUGE scores is smallest when = 0.0025,
which suggests that this model will generalize best out of the three to unseen observations. Based
on this analysis, we choose n = 0.0025 as a learning rate parameter for the rest of our experiments.

4.4.2 Quantitative Results

Our results are shown in Table 5. Our best model scores achieve a 2-ROUGE score of 42.1 on the
test set. We observe that adding drop-out does not results in an improvement with respect to our
standard model. We note that our network is small relative to our dataset and we are lowering its
complexity further by introducing regularizartion. Further, as shown in Figure 6, we were already
doing very little overfitting; as a result, regularization hurt our model instead of helping. Hence,
we decide not to add dropout in the rest of our models and do early stopping based on 2-ROUGE
performance on the validation set instead. Meanwhile, the introduction of an attention mechanism
yields in a 4.6 point increase in the test 2-ROUGE score when the encoder is a unidirectional RNN.
However, using a bidirectional RNN for the encoder results in a significantly lower ROUGE score,
possibly because this model is too complex and has started fitting the error in the training set.

Model 2-Rouge I
standard seq-to-seq 37.5
standard seq-to-seq + dropout 26.2
standard seq-to-seq + attention 42.1
standard seq-to-seq + attention + bidirectional encoder 30.4

Table 5: Rouge F; scores on the test set. We note that we have no baselines from previous work
to compare our results with, since, to our knowledge, no one has used this dataset for a similar
task before. However, for reference, the test ROUGE-2 F; scores for the models and baselines for
abstactive summarization presented by See et al. [6] range from 11.17 to 17.70. Our best model is
the attentional sequence-to-sequence model with an unidirectional RNN for the encoder.

4.4.3 Qualitative results

We start by analyzing the playlists in which our model performs well in terms of ROUGE; that is,
test examples where the bi-gram overlap between targets and predictions is high. In particular, we
will analyze the examples in which our model predicts exactly the target playlist title.

Figure 8 shows the target playlist titles that our best model predicted exactly on the test set more
than 50 times along with the number of times playlists with that title were “classified” correctly.
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Figure 8: Correct predictions by title



We see that, according to this metric, our model performs particularly well in playlist with titles that
are very common in our dataset, such as Country, Christmas, Rap, Rock, Worship, and Chill. As
a reference, our model predicts the playlist name exactly right in 11% of our test examples and a
substring of the target (or viceversa) in 21.7% of the test examples.

Now we consider playlists examples in which our model commited “errors”, if we consider an
example with a low ROUGE score an error. In particular, we consider some playlists in which the
ROUGE score is zero or very close to zero.

Predicted True

0Old Skool 90 ’s Kid

No Scrubs, No Diggity, Basket Case, Smells Like Teen Spirit, . ..
Emo It’s Not a Phase Mom

Sugar We’re Going Down, All the Small Things, Welcome to the
Black Parade, Misery Business, I Write Sins Not Tragedies, . ..

Running Sweat

Stronger, Sexy and I Know It, Hey Ya, Pump it, Boom Boom Pow ...
Espaiiol Pop Latino

Mi primer millon, Corazon, Te extrafio, Bésame, Dulce locura . ..
Twerk Booty

Lemonade, Bedrock, Work, Bad Girlfriend, New Workout Plan, . ..
Margaritaville Summer

All My Friends are Wasted, Fergalicious, Call me Maybe, . ..

The Classics of the Days Dad

Superstition, Son of a Preacher Man, Crossroads, Good Vibrations, . ..
Heartache Break Up Songs

Rolling in the Deep, Just Give Me a Reason, What Hurts the Most, . ..

Figure 9: Example titles generated by our best model for playlists in the test set along with a sample
of representative songs from their corresponding tracklists.

As shown in Figure 9, even when our model makes mistakes according to our automatic evaluation
metric, the playlist titles generated by our model are very similar in meaning to the true title and
convey very well the escence of the playlist. In particular, we observe that often our model often
predicts a synonym of the original playlist name or a word that captures very well its meaning, such

as “oldies” vs. “throwbacks”, “christian” vs. “worship”, “gym vs. workout”, and “yoga music” vs.
“meditation”.

In general, we observe that our model generates representative titles for most of the examples in
the test set; even when our model makes “mistakes” in terms of bi-gram overlap, our playlist title
generator predicts names that capture very well the gist of the playlist.

The code for all models, the complete list of predictions on the test set, and the interactive console
that generates playlist names given an input tracklist are available online*.

5 Conclusion

In this project we provided a sequence-to-sequence model for playlist title generation and showed
that it produces human-like playlist titles for unseen tracklists. Our main challenge was finding a
good metric for evaluating our predictions, given the inherent subjectivity of determining a “good”
playlist title. It is still an open question how to automatically evaluate performance on abstractive
tasks so partial that not even humans can agree on.

As a next step, we suggest extending our model to a token to character sequence-to-sequence archi-
tecture, given the short nature of our outputs. In such model, the encoder would still be in charge of
producing a fixed-length encoding of an input sequence of tokens, but the decoder would predict the
playlist title one character per output timestep.

4github.com/sofia-samaniego/cs224n-spotify/
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