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Abstract

Given the Stanford Question Answering Dataset, we introduce a deep learning
model that will predict a span (start position, end position) within a context para-
graph that answers a question. Our model builds upon previously established
models and techniques, such as Coattention [3], BiDAF [2], the R-Net model [1],
and Smart Span selection [5]. We also carefully analyzed the errors that our model
is making at each attention layer, by plotting the attention distribution heat map
and looking at various error statistics,. We also explored approaches to mitigate
these errors. Though not all of our approaches succeeded, we found interesting
insights into how our model works at per layer level, which gave us many ideas
for future improvement.

1 Introduction

Humans are well-known for their ability to critically think and reason to reach a conclusion.
In everyday life, as people interact with each other, we deduce what actions to take from the
information given.

Reading comprehension itself is an act that requires critical thinking to derive the answer
from the given context. Given a paragraph and a question about the paragraph, our goal is to answer
the question correctly. For this task, we are using SQuAD (Stanford Question and Answering
Dataset).

We strive to create a model that is able to learn from each example it goes through, and im-
prove on its ability to find the right places in the paragraph to focus its attention on to determine the
answer. To do so, our approach is to first focus attention on the context to gather the information,
then focus attention on the question to figure out where in the paragraph is the answer to the
question.

2 Background/Related Work

The Natural Language Computing Group of Microsoft Research Asia introduced the R-NET, an
end-to-end neural networks model for reading comprehension [1]. It first matches the question
and context with gated attention-based recurrent networks to get the question-aware passage
representation. Then, they use a self-matching attention mechanism to improve the representation
by matching the passage against itself, encoding information in the passage. Finally they use
pointer networks to locate the positions of answers from the context paragraphs. However, they
were limited in trying to integrate syntax information into the model.

The results of just a single model are very good, reaching an F1 score of 80.7 and EM 72.3



on SQuAD. The ensemble performed even better.

The Allen Institute for Artificial Intelligence in the University of Washington introduced the
Bi-Directional Attention Flow (BiDAF) network [2]. It represents the context at different levels
of granularity and uses a bidirectional attention flow mechanism to obtain a query-aware context
representation without early summarization. Single model reached F1 77.3 and EM 68.0 on SQuAD.

Salesforce research introduced the Dynamic Coattention Network (DCN), which fuses co-
dependent representations of question and context paragraph to focus on the relevant parts for both
[3]. A dynamic pointing decoder iterates over potential answer spans. It allows the model to recover
from the local initial maxima corresponding to incorrect answers. Single model reached F1 75.9%
from SQuAD.

We also used the smart span technique [5] which was mentioned in Reading Wikipedia to
Answer Open-Domain Questions by Dangi Chen et al.

3 Approach

3.1 Overview of Approach

Our overall approach is to build and train a model with features suggested by past research papers,
evaluate its performance, analyze where it fell short, and improve the model by adding other tech-
niques or tuning hyper-parameters to attempt to make up for where we think the problem was. We
will discuss some of the techniques that we have explored, some implementation choices we made,
and how we arrived at our final model.

3.2 Baseline Model

The baseline model we used is the one given in the default project. It has an RNN encoder layer that
encodes both context and question, an C2Q attention layer that correlates the context and question
representations, and an output layer that applies a fully connected layer and two separate softmax
layers, one to get the start location and one to get the end location of the answer span.

3.3 Bidirectional Attention Model

The first improvement we made was to implement BiDAF [2] to replace the basic attention. We
followed BiDAF’s original equations below:
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We saw some improvements in all of our evaluation metrics after implementing BiDAF (F1
& EM for both Training and Dev), although the improvements were not too significant, which led
us to explore other techniques such as the Coattention.

3.4 Coattention Model

The next improvement we tried was implementing coattention [3]. We also followed the original
equation.
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*We discovered and used the Einstein Sum, tf.einsum, to accomplish broadcasted matrix multipli-
cation, so the above step were done in batch.

The model also appends sentinel to the context and the transformed question representations,
giving the attention mechanism a choice to pay attention to nothing.
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Finally, we combine the Q2C and C2Q attention and fed them to a biLSTM: wuq,...,uy =
biLSTM ([s1; a1, ..., [sn,an])
u1, ..., uy Will be the output of this attention layer.

Coattention performs very well when we didn’t use q’, and used the raw question represen-
tations passed from the previous RNN encoder layer. Once we used q’, the end (plateau)
performance actually slightly decreased, however the loss drops much sharper in the beginning, we
made an assumption that values of Matrix W is probably too large and the model is overfitting to
the first dozens of training batches. Indeed, after we clipped values of W to between 0 and 1.5, the
performance got much better.

dev/EM dev/loss dev/F1

Figure 1: Orange: coattention model with dot product. Blue: coattention model with 1.5 W param-
eter value clipping for multiplicative attention

3.5 BIiDAF and Coattention Model

After seeing how powerful the coattention and BiDAF models were, we wanted to try an ensemble
and put both models in parallel by concatenating their attention output.

bfinat = [bi; u;] where b; is the attention output of biDAF and wu; is the attention output of
Coattention

This approach performed very well for dev FI/EM, although it still overfits to the training
set like the previous models. To remedy the issue, we tried L2 regularization and even Word
Dropout [7], which was mentioned in lecture. These techniques did prevent overfitting to some
degree, but the model did not perform as well as before for both training set and dev set. Moreover,
since we don’t have enough time and resources to tune these regularizations, we decided to not use
them.

3.6 Coattention and Self-attention Model

From our previous models, we observed that Coattention alone was performing very well already,
and that BiDAF in parallel with Coattention model performed only slightly better. We looked at
some of the errors that we were making at this point and came to the conclusion that maybe the model
isn’t deep enough to fully understand questions and contexts with complex syntactical structure and
meaning.

After some research, we came upon R-Net [1], a model that has a Context/Passage Self Attention
layer after the Question and Context/Passage matching layer. This immediately made sense to us, as



the self matching layer is performing some sort of iterative reasoning in a sense. The first Question
and Context/Passage matching layer primarily focused on word-level, isolated correlations between
words in the question and words in the context.

The Self Attention layer further connected words in the passage together, achieving a deeper
understanding of the context. And indeed, this model performed better.

3.7 Coattention and Self-attention with Smart Span Model

We observed that some of our models’ mistakes were when the answer show up multiple
times in the passage (in exact words or not), and the model choose one appearance’s start with
another appearance’s end, which can include many words in the middle (length of span is very large).

To prevent this type of mistake and further improve F1 and EM scores, we used a smarter
Span Selection mechanism, which is suggested in the DrQA[5] paper, we choose the start, end
location pair (i, j) that maximizes the probability p*t*"*(i)p°™¢(j) while constraining i < j < i+15.
The threshold 15 is chosen because only 2.379% of the training answer spans has length above 15,
so we are not excluding answer lengths that appear very often:

Figure 2: Histogram of train answer length frequencies

Moreover, we discovered the short comings of the Self Attention mechanism in R-Net.
For a piece a passage where the wrong answer appear multiple times, even when the wrong answers
aren’t exactly the same, the model will eventually lean towards such wrong answers as it will
still assign high attention score to them and their representations will dominate the sequence [See
example in Figure 9].

This led us to propose the Mindful Self Attention, which is Self Attention on the context with the
question in mind.

3.8 Coattention, BiDAF and Mindful Self-attention plus Smart Span

The idea of adding BiDAF as an additional layer in between Coattention and Self-Attention stems
from our observation of human behaviors.

When people perform this kind of question answering tasks, they sometimes re-read the
question and tries to get a better sense of it after the first pass of reading the question and the
context, especially when the context or question is complicated or recursive. This behavior is
”simulated” by our model in the following ways:

1. Coattention layer builds correlation (cross-references) among context positions and ques-
tion positions, the attention output is “context representations with the question in mind”

2. BiDAF layer allows the model to re-read the question and see which parts of the new context
representation, which incorporated the part of the question that it paid attention too, is more relevant
to the question.

3. Mindful Self Attention does context/passage self matching again, achieve better understanding
of the passage with the question ”in mind”.
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This turns out to be our best and final model.
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Figure 3: Final Model Diagram

4 Experiments

4.1 Dataset

We evaluated our models on the SQuUAD dataset. This is a reading comprehension dataset consisting
of questions posed by crowdworkers on a set of Wikipedia articles, where the answer to every
question is a segment of text, or span, from the corresponding reading passage. It has 100,000+
question-answer pairs on 500+ articles.

4.2 Experiment Setup

We implemented all of our models with TensorFlow. Word embeddings are based on the pre-trained
GloVe embeddings of dimension 100. We set our number of epochs to 0 to train indefinitely. We
use Adam optimizer with learning rate of 10~3. We set batch size to be 100. Hidden size is set to
200. We reduced the context length to 350 to be able to run our model on 1 GPU, 350 is determined
by plotting a histogram of the frequency of all context lengths and realizing that there are only
0.586 % of the training contexts with length above 350. Embedding size is 100. We apply standard
dropout with 0.15 regularization.
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Figure 4: Histogram of context length frequencies of train data. x-axis: context length, y-axis:
frequency

4.3 Evaluation Metric

The evaluation metrics used are the F1 score and Exact Match (EM) score. The F1 score is the
harmonic mean of precision and recall. Precision is the number of correct positive results divided
by the number of all positive results. Recall is the number of correct positive results divided by the
number of all relevant samples (all samples that should have been identified as positive). The EM
score is a binary measure of whether model’s predicted answer matches the ground truth exactly.



4.4 Experiment Results

BiDAF Model: It did perform better than our baseline, results for BiDAF in Table 1, but we
wanted to try other techniques to see if it would help improve/do better. *In implementa-
tion, we actually broke W,;,, which is originally a vector of size R%" to three R?" vectors,
and applied #f.matmul individually with C, Q and CQ7, then expand certain dimensions of each
result and made a broadcasted addition. This is done to conserve memory consumption of the model.

Coattention Model: We ran experiments with 2 different attention formulas (dot product at-
tention and multiplicative attention ). We also explored various W parameter value clipping for
multiplicative attention, and found that the optimal value is 1.5. Coattention performed significantly
better, for Coattention in Table 1.

BiDAF and Coattention Model: After the previous two models, we wanted to test out how
well having both BiDAF and coattention in parallel would perform. It performed slightly better
than coattention by itself as seen in Table 1.

Coattention and Self-attention plus Smart Span Model: Since BiDAF and Coattention in
parallel did not perform significantly better, we took out BiDAF and instead added self-attention
and Smart Span because it was proposed in the R-Net[1]. As the results show in Table 1, this model
performed significantly better than our previous models.

Techniques that didn’t bring improvements so far: Answer Pointer [6], Iterative reason-
ing [3], Additive Attention. Based on our error analysis, we also created some original techniques
like "BiDAF with beta from alpha” and ”Self Attention weighted by Question” which didn’t make
improvements so far (didn’t really do worse either) which we will talk about later.

4.4.1 Final Model: Coattention, BiDAF, and Self-Attention plus Smart Span

Our final and best model added BiDAF back again to the coattention and self-attention plus Smart
Span model because it can give the model a second chance to go over the question. This model
performed a little better than the previous model as indicated in Table 1.

dev/EM dev/loss
dev/F1

Figure 5: TensorBoard of Coattention, BiDAF, and Self-attention plus Smart Span Model

Table 1: Dev Evaluation Results of some of the models we tried

Model EM F1
BiDAF 0.2927 0.4316
Coattention 0.4932  0.6497
BiDAF and Coattention in parallel 0.4770  0.6255
Coattention and Self-attention plus Smart Span 0.6325 0.7406

Coattention, BiDAF, and Self-attention plus Smart Span  0.6417  0.7500



4.5 Error Analysis

There are in general 2 main approaches we took in error analysis: 1. Statistical approach: we
collected statistics on what type of errors were made and how often these errors appear. For
example, here are the statistics we collected for our final model:

For 100 examples:

start right end wrong: 11 =0.11%
totally wrong: 25 = 0.25%
end within true span: 11 =0.11%

end right start wrong: 16 =0.16%
start within true span: 14 = 0.14%
prediction span encapsulates truth: 2 = 0.02%

This approach informed out attempts to implement the Answer Pointer[6], which is to condi-
tion the span end on the start, since there are a lot of wrong predictions had the right start but wrong
end or vice versa. We believed that Answer Pointer will help us better predict both the start and
the end as the end’s loss will also propagate to the start. However, we could not achieve better
performance till the date of this report, but it is something we would like to further explore.

2. Example approach: To understand where each of our layers fell short and how they might
contributed to the errors our model make overall, we analyzed the attention distribution that
each layer produces with concrete examples (we added the ’eval’ mode and code to lot attention
distribution heatmap). One of the examples is the following:

CONTEXT: (green text is true answer, magenta text is predicted start, red text is predicted
end) southern california is home to many major business districts . central business districts ( cbd
) include downtown los angeles , downtown san diego , downtown san bernardino , downtown
bakersfield , south coast metro and downtown riverside . QUESTION: what is the only district in
the cbd to not have ” downtown ” in it ’s name ?

TRUE ANSWER: south coast metro

PREDICTED ANSWER: downtown los angeles

* In above example, the question is asking for the district whose name does not contain
“downtown”, but the coattention layer focused on the ones with "downtown” in their name, due to
the word-level high attention score of "downtown” in question and ”downtown” in context. This
phenomenon is demonstrated with the Coattention’s C2Q attention score () plot here:

*The darker the color, the higher the attention score
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Figure 6: Self Attention Score Heatmap
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This type of error inspired us to implement the ”Self Attention Weighted by Question”, and ”Self
Attention Maxpooling”.

The first aims to bring the question back into self attention so that the appearance of multiple similar
wrong answers in the context will not result in a large misleading attention output summation in the
end. The equation is:

Score;j = cic; where ¢} is calculated with the beta distribution in BiDAF: ¢; = 3;¢;eR?", however
it didn’t make the model better. The second also tried to tackle the same phenomenon by not
replacing the summation: a; = > j scoreg, jc; with a max pooling: a; = max;score;, jc;, but it
didn’t work either at the moment.
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Figure 7: Coattention Q2C matrix
This graph, accompanying the heat map of the raw attention score: L, inspired us to try "BiDAF
with beta from alpha” since alpha seems to be a more focused representation of how much each
answer candidate relates to the actual question. which is to replace the raw attention score L in
a; = softmax (Li,;)eRM +1 with alpha, which is the attention distribution taken over the question
representations. However, still no improvements were seen.
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Figure 8: Coattention C2Q matrix
In the end, we suspected that out model is fundamentally not powerful enough to understand com-
plex questions (with negation, dependent clauses etc.), as demonstrated by the Coattention C2Q
distribution above. There are also questions that required world knowledge to answer, which is
impossible for our model.

5 Conclusion

We learned that combining different techniques often require further tuning and modification. More-
over, proper error analysis during the development of a model is very helpful. We have tried to
implement Answer Pointers but it didnt work with the rest of the model, which could be something
that we want to further explore and integrate.
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