The SQuAD Challenge - results of several

experiments
Rajeeva Gaur Satyam Kotikalapudi
SUNet ID: rajeevag SUNet ID: satyab92

March 22, 2018

Abstract

Given SQuAD (Stanford Quesiton Answering Dataset) The goal of
the project is to provide improved F; and EM results over the baseline
result. In this paper we report the results of several experiments we
conducted by turning features on/off. At the end we combined some
features to get a better result compared to the baseline result.

1 Introduction

In a question-answering system given a paragraph of texts and a question
about the paragraph as inputs question-answering system returns the correct
answer. In general, question answering systems are very complex and are
considered an improvements over the traditional search engines because they
provide precise occurrences of answers in documents.

In this project we are given SQuAD (Stanford Question Answering Dataset).
We are provided with a baseline implementation of RNN encoder layer, at-
tention layer, and an output layer. The focus of our project is to replace
model in the attention layer, and tune hyper-parameters, use different opti-
mization algorithms, improve on answer spans i.e. smarter spans contribut-
ing towards improving upon the baseline result.

The organization of this report is as follows: In Section2 we present re-
lated work. In Section 8 we describe the criteria for selecting the model and
hyper-parameters. We describe the model’s implementation, and additional
implementations, and tuning in Section 4. Section 4 has been divided into
several Sub-sections. In Section 5 we present our results. In Section 6 we
conclude and highlight our result. In Section 7 we discuss future work.

2 Related work

In recent years, natural language processing in general and a question-answer
system in particular has become a hot topic for research. Researchers at
Stanford [3], Facebook [4], and IBM [5] and many other universities and
industries are actively working on it. Our project is based on SQuAD.
SQuAD is less than two years old and already has many researchers working
on improving the accuracy of system.

3 Criteria for models’ and parameters’ selection

We have two criteria for evaluation: Fj score and ”Exact Match(EM)”
score. Fj score is defined as follows:
2pr

F =
p+r

, where p is precision and r is recall (1)

EM is a binary measure, i.e. if the system’s output matches the ground
truth exactly then the score is 1, otherwise the score is 0. The leader board
prioritizes on improving the Fj score over EM score. Note that EM score
is a stricter measure.

4 Models’ selection and implementation details

4.1 Determining maximum context and question lengths

We created graphs(Figure 1) for contexts and answers and analyzed the
graphs we determined that the default length for contexts and questions
provided in the code is reasonable.

4.2 Attention models

Frist we chose to implement BiDAF'(Seo et al. [1] Attention Model. In our
implementation we precisely followed the steps given in the project docu-
ment. However, due to small amount of available memory, the code ran
out of memory. Therefore, we split the Similarity matriz in BiDAF into
three components: wg;n,, for context hidden states, wsim, for question hid-
den states, and wsim,,, for element-wise product. Furthermore, we reduced
the batch size to 50 to resolve the memory issues.

Later we implemented Dynamic Coattention Network Attention Model
and tried adding additional layers to both BiDAF Dynamic Coattention

25000

20000

15000

count

10000

5000

10000

8000

6000

count

2000

(a) Answers

answer

Figure 1: Data analysis.

(b) Contexts.

context

L Al

10000

8000

6000

count

4000

2000

400 500

length

0 100 200 300

(¢) Questions.

question

100 200 400 500 600
length

700 300 700

(d) Spans frequency.

span

25000

20000

15000

count

10000

5000

0 10 20 30 40
length

400 500 600 700
length

50 60] 100 200 300

Network. Also tried to combine them using weighted average, but could not
complete the training due to long iteration periods.

4.3 Hyper-parameter tuning

We experimented with a few learning rates. We found that starting learning
rate of 0.001 is reasonable. However, we made the learning rate decay expo-
nentially with increasing epoch. Our experiment suggests that the following
exponentially decaying learning rate is a good choice for this project:

learning rate = 0.001 % e~%2** where i is epoch number

(2)

4.4 Regularization

We considered the following dropouts 0.25, 0.2, 0.18, and 0.15. Based on
our experimental results, we chose dropout to be 0.2 as a reasonable choice.
We also used L2 regularization; however, the results were below par.

4.5 Smarter span selection at test time

We first implemented and experimented with span selection as given Chen
et al. [1]. However, the runtime was significantly slower. Furthermore the
hyper-parameter ”offset” (i <= j <= i+ offset) required significant tuning
time. As a result we implemented a greedy method as follows: For batches
where end-position is smaller than start-position, we compute temp-start-
position = np.argmax(start-dist[:end-position]) and temp-end-position =
np.argmax(end-dist[start-position:]). Between pairs <temp-start-position,
end-position> and <start-position, temp-end-position> we chose the pair
that gives larger product-probability (some corner cases such as end-position
being 0 and start-position being the last index needs to be taken care of).

Due to time to run, We first determined the best model and hyper-
parameters and then applied smarter span selection to it (it is possible that
other model and/or hyper-parameters may have performed better, but due
to time constraint we did not experiment).

4.6 Model size and number of layers

We increased the number of hidden layers by one and in a separate exper-
iment increased the hidden size to 300 we used different dropout rates for
BiDAf. However, it took significantly longer to run without improvements
in the result.

4.7 Optimization algorithms

The baseline code has included Adam Optimizer. In addition to Adam Opti-
mizer, we also used Stochastic/Batch Gradient Descent in combination with
exponentially decaying learning rate. The intuition is that as the algorithm
approaches the optimal point a smaller learning rate is preferred to prevent
oscillations. However, The runtime was extremely large and the results for
up to 5000 iterations and improvements were very slow. So, we did not
proceed further.

5 Results

5.1 Regularization

We present the results in the table form. First we present the result of
regularizaton using the Attention model in the base line code.

Table 1: Selecting Regularization (Dev Results)

L2 dropout 0.25 || dropout 0.2 || dropout 0.18 || dropout 0.15
P 0.45 0.39 0.455 0.38 0.39
EM 0.33 0.28 0.336 0.28 0.28
At iterations || 16000 17000 20000 26000 16000

The result presented in Table 1 is the best result we achieved after ob-
serving the trend for 3000 additional iterations before stopping the program.
Due to the nature of the problem, it is likely that the results would have
improved if allowed for more iterations. However, due to time constraints,
we had to stop the experiments. For the results look into Table 1 Adam’s
Optimizer with a fixed learning rate of 0.001 were used.

5.2 Model size and number of layers

By adding one more hidden layer and by increasing the hidden size to 300
along with dropout rate set to 0.25, the run time was significantly higher
and results were not at par. So, we discontinued the experiments after 5000
iterations. The number of iterations are small; however, we had limitations
on time so we looked at the trend to make the decision.

5.3 Optimization algorithm selection

The convergence with SGD were very slow and appeared to tapper off at
10000 iterations. So, we didn’t proceed after 10000 iterations. We used
SGD with exponentially decaying learning rate to prevent any oscillations as
number of epochs increase. The formula we used for exponentially decaying
learning rate is given in Section 4.3.

5.4 Attention model selection

We started with BiDAF and compared it with the base attention model.
Table 2 summarizes the result.

Table 2: Selecting Attention model (Dev Results)

Base Model || BiDAF model || DCN model | DCN + addl. Layer
P 0.442 0.333 0.309 0.236
EM 0.348 0.29 0.22 0.164
At iterations 15000 18000 18000 4500

Later we implemented Dynamic Coattention Network and compared it
with the base attention model. We implemented weighted BiDAF and Dy-
namic Coattention Network model, training took 40sec per iteration and
could not complete the training.

Our currently submitted code to the leadership board has Smart span
selection at test time and produces Dev scores: F1 = 0.494 and EM = 0.397
taken at iteration 19000 with a batch size 50. We are working on improving
the result.

6 Conclusion

We tried several features with on/off and the best result currently we have
from BiDAF with Smart Span Selection At Test Time, using Adam’s Op-
timizer with decaying learning rate. Our best result on Leader Board is:
F1 = 0.494 and EM = 0.397 at 19000 iterations with batch size 50. We are
working on improving the result.

7 Limitations and Future work

Due to limited time and compute resources, we were able to run some ex-
periments with features on/off. Furthermore, if the per iteration run time
of an experiment was high, we terminated the experiment. We also termi-
nated experiments if we noticed that there were not enough progress in three
consecutive reporting of the F1 and EM scores on Dev. However, we have
noticed that F} and EM were not monotonically decreasing as a result it is
likely that we may have stopped some experiments too soon.

With more compute resources and time we would like to study into the

experiments which we may have terminated too soon. We also want to im-
plement more Attention methods. In addition to feature on/off study we
would like to combine more features together to see if the results improve.

We

could use feature selection algorithm which is a greedy algorithm, we

give the pseudo-code for feature selection algorithm as follows:
selected-feature-list = ¢
All-features

For

each iteration do:

if All-feature is ¢ break the for-loop

Evaluate each feature € All-features, choose feature f with the best result
If the improvement from f is not significant break the for-loop;
selected-feature-list += f

All-feature -=

End for-loop

References

1]

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Ha-
jishirzi. Bidirectional attention flow for machine comprehension. arXiv
preprint arXiv:1611.01603, 2016.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes.
Reading wikipedia to answer open-domain questions. arXiv preprint
arXiv:1704.00051, 2017.

Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coatten-
tion networks for question answering. arXiv preprint arXiv:1611.01604,
2016.

A. M. Rush, S. Chopra, and J. Weston, A neural attention model for
abstractive sentence summarization, CoRR, vol. abs/1509.00685, 2015.
[Online|. Available: http://arxiv.org/abs/1509.00685

[5] R. Nallapati, B. Xiang, and B. Zhou, Sequence-to-sequence rnns for text
summarization, CoRR, vol. abs/1602.06023, 2016. [Online]. Available:
http://arxiv.org/abs/1602.06023

