Question Answering with the SQuAD

Wayne Lu
Computer Science
Stanford University
waynelu@stanford.edu

Abstract

The reading comprehension problem involves training a machine system to pro-
cess text such that it is able to accurately answer queries about the text. In this
project, we investigate, train, and evaluate recurrent neural network architectures
to address this problem. Architecture modules are largely drawn from the Bi-
Directional Attention Flow (BiDAF) model introduced by Seo et al. [4]. The
performance of the networks are evaluated on the Stanford Question Answer-
ing Dataset (SQuAD), with results similar to the original non-ensembled BiDAF
model.

1 Introduction

The reading comprehension problem is a form of natural language understanding which involves
training a machine system to answer questions about a body of text. That is, given an query and
context pair, the system should return an answer either directly quoted from the context or generated
using a language model. In this way, the reading comprehension problem serves as a measure of how
well machine systems are able to process and understand human text and has practical applications
in quickly extracting answers to human queries from large bodies of text. In the case of this project,
our systems extract portions of the context as answers, which simplifies the problem.

In this project, we begin with a basic baseline neural network model and iteratively upgrade different
portions of the model to improve performance. The basic components of the model consist of a
token embedding layer, which converts tokens to dense vector representations better suited for neural
networks; an encoding layer, which processes the query and context; an attention layer, which allows
the system to focus on portions of the context which are most relevant; and finally an output layer,
which produces probability distributions for the start and end of the answer span.

2 Background/Related Work

SQuAD is a publicly available dataset with a public leaderboard displaying test F1 and exact match
scores. Human performance is quantified as an exact match (EM) score of 82.304 and a F1 score of
91.221. The leaderboard has attracted model submissions from both academic and industry research
departments, with many systems producing near-human performance.

Notably, many models introduce novel attention mechanisms such BiDAF’s context-to-query and
query-to-context attention [4], the Hybrid AoA Readeer’s attention-over-attention mechanism [1],
and the Dynamic Coattention Network’s coattention mechanism [5].

p start p end
t '

FC + Softmax | | FC + Softmax | Output
A

— = = = = =

Bidirectional GRU Modeling

e e e S

A4 4 4 4 4

Y

Query2Context
> - Attention
Context2Query
| A A A 4 4 4
— — — — — — —
Bidirectional GRU Bidirectional GRU Encoding
—_ — — —_ = = 3 — —

A4 4 4 4 A 4 4 4

Token embeds Token embeds Embeddings

A4 A A A A A 4 4

Question Context Inputs

Figure 1: Diagram of the neural network architecture used in this project.

3 Approach

3.1 Token embedding layer

Dense vector representations of the input tokens are generated at both the word level and the
character level. Word-level vectors use 100-dimensional fixed pretrained GloVe embeddings [2].
Character-level vectors are generated by first converting the token characters to trainable 20-
dimensional embeddings. The character embeddings are then fed through two 1-D convolutional
layers with 100 filters, window size 11, and stride 1. The first convolutional layer applies a ReLU
non-linearity while the second layer maintains a linear activation. The outputs of the second layer
are then passed through a max pooling layer to create a 100-dimensional dense representation of the
token at the character level. The word-level vector and the character-level vectors are then concate-
nated to create a 200-dimensional dense representation of the token.

Character vectors are only assigned to the set of printable ASCII characters (accessed via
string.printable in Python 2.7). No normalization of Unicode characters is performed, such
as converting “’¢” to ”’e” or Romanization of non-Latin scripts. Characters outside of the set of print-
able ASCII characters are all assigned the same UNK vector, similar to how unknown tokens are

handled with word-level vectors.

All queries, contexts, and tokens are padded or truncated to a fixed size, as is required for batch
processing. Queries are fixed to M = 30 tokens, contexts are fixed to N = 400 tokens, and tokens

are fixed to 20 characters. These limits allow approximately 99% of the training examples to remain
untruncated. A visual representation of this system can be found in Figure 2.

| Token embed |
i ¥

| Max pool I

| S S S |

(::I%Vfi 2-layer CNN

€mbe f 1 & 1

Char embed |

#Gﬂ#f%ﬂ

token |

Figure 2: Diagram of the architecture of generating token embeddings.

3.2 Encoding layer

An initial encoding of the query and context dense representations is performed by feeding the
query and contexts independently through a bidirectional GRU. The forward and backward GRU
cells each have a hidden state size h = 200, resulting in a query encodings qi, . ..,qy € R?" and
context encoding ¢y, .. .,cy € R?",

3.3 Bidirectional attention layer

With the query and context encodings, we then apply the bidirectional attention mechanism de-
scribed by Seo et al. [4]. As described in the project handout, given context encodings c1, ...,cny €
R?" and query encodings q1, ..., qy € R?", we calculate a similarity matrix S € RV XM such that

Sij = wiless 51 €5 0 ¢4
where wgm € R%” is a trainable weight vector.
3.3.1 Context-to-query attention (C2Q)

Given the similarity matrix S, we take a row-wise softmax to produce attention distributions

al,..., o € RM. We then use the C2Q attention distributions to take a weighted sum across
the query encodings, which produces C2Q attention outputs ay, ..., ay € R?". Thatis,
M
a; = Za;-qj vie{l,...,N}
g1

3.3.2 Query-to-context attention (Q2C)

Taking the row-wise max over the similarity matrix S, we obtain a vector m € RY. Taking the
softmax of m, we then obtain a attention distribution 3 € R™. Using 3, we then take a weighted
sum across the context encodings to produce the Q2C attention output ¢’ € R?". That is,

N
d = Z Bici
i=1

Finally, we combine the context encodings, the C2Q attention outputs, and the Q2C attention output
to produce query-aware context encodings

by = [6 ot & 98] Vi€ {Lye. N}

3.4 Modeling layer

As with the BiDAF model, we pass the query-aware context encodings b1, . . ., by through a second
bidirectional GRU in order to encode the context after it has taken the query into account. As with
the first bidirectional GRU, each cell has a hidden size of h = 200, resulting in modeling output
mi,...,my € RQh.

3.5 Output and prediction layer

The modeling outputs are flattened and concatenated, then fed through two independent fully con-
nected layers with softmax to generate pg,+ and peng, Which are probabilities distributions over the
context for the start and end of the predicted answer. At test time, the actual predicted start and end
are chosen as the pair

(4,J) = arg max Pyarc(4)Pena(4)
i<j<it+15

3.6 Optimization and regularization

Loss is calculated as the summed cross-entropy loss of the start and end predictions. Trainable
weights are optimized using the Adam optimizer. The initial learning rate is set to 0.001 and decayed
by 0.1 every 10,000 steps, which correspond to times when the development loss has plateaued.

Regularization of the model is achieved by applying dropout with dropout rate of 0.15 to the outputs
of the encoding and attention layers.

4 Experiments

4.1 Dataset

The networks are trained and evaluated on the Stanford Question Answering Dataset (SQuAD),
which consists of queries, paragraphs from Wikipedia, and human-generated answers crowdsourced
via Amazon Mechanical Turk [3]. To account for variation in human answers, each example has
three answers. After pre-processing and cleaning of the data, there are 86,326 training examples and
10,391 validation examples.

4.2 Model components

The final submitted for testing was created by iteratively adding improvements to the provided
baseline model. In order of implementation, the improvements consist of: the BiDAF attention
mechanism, character-level token embeddings, smarter test-time answer span selection, the BIDAF
modeling layer, and decayed learning rate. Each additional architecture model produced noticeable
improvements in performance, with the BiDAF layers having the most impact.

Table 1: Dev F1 and EM scores of different models at training time

BiDAF Char-level Span selec- | BiDAF LR decay F1 EM
attention embed tion modeling

No No No No No 40.375 | 29.352
Yes No No No No 46.168 | 34.081
Yes Yes No No No 49.241 | 36.307
Yes Yes Yes No No 54.424 | 40.572
Yes Yes No Yes No 67.654 | 52.902
Yes Yes Yes Yes No 69.566 | 54.048
Yes Yes Yes Yes Yes 70.839 | 55.713

4.2.1 Character-level token embeddings

Interestingly, the character-level token embeddings improved the dev F1 and EM scores by only
3.1 and 2.2 points, respectively. However, this is not surprising considering that character-level
embeddings are meant to act as a fallback for when word-level embeddings are not available. Given
that the SQuUAD dataset consists of paragraphs taken from Wikipedia and the pre-trained GloVe
vectors are pretrained on the Wikipedia 2014 dataset, it is likely that there is a large amount of
overlap between the vocabularies.

4.2.2 Test-time span selection

Smarter test-time span selection greatly improved performance for the model which does not include
the BiDAF modeling layer, increasing F1 and EM by 5.1 and 4.3, respectively. However, the effect
becomes less pronounced after the BIDAF modeling layer is implemented, resulting in F1 and EM
increases of 1.9 and 1.1, respectively. This suggests that the BiIDAF modeling layer is better able
to capture the relationship between the start and end indices than directly passing the attention
outputs to the softmax prediction layers. However, as smarter span selection still leads to improved
performance, the relationship is not completed captured.

Smarter test-time span selection also has the disadvantage of adding a non-neural component to the
network. That is, the actual predictions require extra processing and the network’s loss function
does not accurately model the dependence between the start and end predictions. This is produces
the interesting effect of improving evaluation metrics while not changing the training or dev loss
curves of the networks.

4.2.3 BiDAF attention and modeling layers

The BiDAF attention and modeling layers produced the largest improvements in evaluation metrics.
Implementing the attention layer improved F1 and EM by 5.8 and 4.7 points, respectively, while
implementing the modeling layer then improved the scores by 15.1 and 13.5 points, respectively.
These results suggest the importance of discovering attention and encoding mechanisms which are
able to properly capture the relationship between the query and the context.

4.2.4 Decayed learning rate

The final boost in performance is produced by using learning rate decay, leading to slight increases
in F1 and EM scores of 1.3 and 1.7, respectively.

4.3 Final model evaluation

As noted in the project handout, the training time F1 and EM scores are different than official
evaluation scores, as official evaluation takes all three human-generated answers into account. Test
evaluation of our final model produced an F1 score of 77.082 and an EM score of 67.408. Looking
at sample predictions of the model suggests a few common reasons for prediction errors:

1. Phrases which are similar to the question, but semantically ambiguous without additional
context. For example, the question “"What was produced at Tesla?s company?” results the
answer “Tesla Electric Light & Manufacturing” likely because the system fails to recognize
the sequence as a named entity rather than a product.

2. Query/context pairs with many unknown tokens. For example, in the question "What do
platyctenida use their pharynx for?”, the system did not recognize the token “platyctenida”
and many other tokens in the context were also unknown. This can degrade the performance
of the system because it is not able to properly process the context.

3. Queries which require deeper inference about the context. For example, for the question
”What was the protest in Antigone about?”, the context never directly mentions a protest
but instead discusses how Antigone “defies Creon, the current king of Thebes, who is
trying to stop her from giving her brother Polynices a proper burial.” Thus, answering
this question requires resolving the connection that Antigone is protesting against Creon
because of “giving her brother Polynices a proper burial,” which is the correct answer.
Instead, the system predicts “civil disobedience,” as that is closely related to protesting.

4. Predictions which are slightly too long or too short. This is likely because the system does
not explicitly have a notion of what constitutes a complete semantic unit causing it to either
extend past the unit or truncating it. Because ground truth and predicted answers are both
typically very short, being off by even one token can have a large impact on the F1 score.

5 Conclusions and Future Work

The results of the evaluation suggest that performance could be improved by injecting more seman-
tic information into the dense representations of the tokens. For example, using a named entity
recognition system to annotate the query and context could lead to better disambiguation (such as in
the case of the first error reason). The system would also benefit from a larger vocabulary, as shown
by the second error reason. Though character-level embeddings can act as a stopgap measure, they
are not able to capture as much semantic information as word vectors trained on large corpuses.
The third and fourth error reasons are less obvious to address, and as modeling these complex se-
mantic relationships in text is the core problem of natural language understanding. Finding ways
to encode sentence- and paragraph-level information such as parse trees and coreference resolution
would likely be useful in allowing the system to learn more complex relationships in the text and
warrants more investigation.

It should also be noted that minimal hyperparameter tuning was performed in this project, as we
were more interested in the effects of broad architecture and training changes on the performance of
the system rather than trying to push a fixed architecture to its limits. Experimenting with stronger
dropout or other forms of regularization would help mitigate the overfitting problem. Increasing
embedding and hidden sizes throughout the network would likely also improve performance, though
at the cost of higher runtimes and increased memory demands.

References

[1] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-over-
attention neural networks for reading comprehension. arXiv preprint arXiv:1607.04423, 2016.
[2] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vectors for

word representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543, 2014.

[3] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ ques-
tions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[4] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional atten-
tion flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[5] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016.

