A Bi-directional Attention Flow (BiDAF) Model for
the Stanford Question Answering Dataset (SQUAD)

Helen Xiong Charles Hale
Stanford University Stanford University
Stanford, CA 94305 Stanford, CA 94305

hxiongl2@stanford.edu cphalepk@stanford.edu
Abstract

The research community continues to compete to create better models for the
Stanford Question Answering Dataset. In this project, we tested several simple
adjustments to a high-performing BiDAF model and evaluated their performance
benefits. These adjustments include end-conditioned start prediction, policy gradi-
ent loss, and character level embeddings.

1 Background

Deep Learning approaches have revolutionized natural language programming (NLP) and have
allowed us to feasibly build models that can be applied to much more general tasks than language
modeling or sentence parsing. As such, the focus of research has expanded beyond asking the
question of how well algorithms can analyze the sentiment of movie reviews or predict which words
will come next in a sentence. Researchers are now exploring whether deep learning approaches can
"understand" a text, at the level of being able to answer general questions about it.

1.1 Question Format and Dataset

In general, reading comprehension and question answering can be very subjective, as there are often
many correct answers for a given question. The Stanford Question Answering Dataset (SQUAD)
contains over 100,000 reading comprehension questions. Each question has an associated context and
answer. The context is always assumed to contain information that is directly relevant to the question
such that the answer can be produced by simply highlighting a section of the context. An example
from SQUAD is shown in figure 1.2. This question answering format allows us to greatly reduce
the complications associated with the subjectivity of answers, as the problem becomes equivalent to
pointing out the starting and ending indices of the answer within the context.

However, even with this rigid answering format, there is still room for subjectivity when choosing
which words to include in the answer. In figure 1.2, most would also consider "the San Jose Marriott"
to be an appropriate answer. Some of this subjectivity may explain the fact that human performance
on this dataset is at about 80% exact match (EM) and 91% F1.

The current best models on the public SQUAD leaderboard have not convincingly surpassed human
performance. As such, SQUAD is still considered to be an unsolved problem and active area of
research.

1.2 The Problem

To frame the task more formally, we consider a dataset of question, context, and answer pairings,
{q(i) € Q,c(i) € C’,a(i) € A}fil. q is a vector of words, w € V, where we consider V to be

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

an extended vocabulary of the English language. c is the context, which is also a vector of words.
The answer a = (istart, lend) 1S @ tuple where 0 < igtart < Gend < |C| — 1, which correspond
to the indices first and last words of the answer within the context. We seek to find a model
fo: (Q x C) — A, which maximizes the F1 score over the SQUAD test dataset.

Question:

Which hotel did the Broncos use for Super Bowl 50?
Context:

The Panthers used the San Jose State practice facility
and stayed at the San Jose Marriott. The Broncos prac-
ticed at Stanford University and stayed at the Santa
Clara Marriott.

Answer:

Santa Clara Marriott

Figure 1: An example from the SQUAD dev set.

2 Approaches

2.1 Attention Baseline

We trained a baseline model which uses a bi-directional RNN encoder to encode both the question and
the context. These hidden states are then fed into a basic dot-product attention layer which combines
the question and context layers. [1] This attention layer takes the dot product between question and
context words and passes the resulting attention scores through a softmax layer to obtain an attention
distribution. These attention distributions are used to weight the context hidden states which are then
passed into separate softmax layers to produce distributions of start and end indices for the answer.

2.2 Attention over Attention

The first addition to the basic attention model that we implemented was the combined attention
layer as described by Cui et. al. [2]. We noticed that the model is relatively simple, and [2] claims
it achieved state-of-the-art performance on question answering tasks similar to SQUAD with one
attention over attention (AOA) layer.

The AOA layer takes in the context encodings cy, ..., cp and the question encodings ¢, .., g and
computes a similarity matrix S € RP*@, defined as:

Si; = ¢l g (1

We then take the question-to-context attention, A, as the column-wise softmax of S. Additionally, we
form the context-to-question attention, B, as the row-wise softmax of .S. This tells us the relative
importance of each word of the query for each word in the document. We then aggregate these
importances by taking the column-wise average, § = % > j B; .. The result is a single probability
distribution representing the overall importance of each query word having taken the document into
account. The idea is that A is a basic attention distribution over the context words for each of the
query words. We can then weight each query word by its overall relevance to the document to give us
a final overall distribution over the importance of each context word. We do this by forming s = AfS.
Notice that the columns of A are all distributions, and so is 3, so s will also be a distribution.

We formed a basic model using this layer to test its performance. We encoded the context and
the query with separate bi-directional RNNs with GRU cells. The context hidden states were then
projected with separate linear layers: one for the start index prediction and one for the end index
prediction. These two sequences of hidden states were then fed into AOA layers to produce the output
distributions over the context positions. We then trained this model using simple cross entropy loss to
predict the starting and ending answer indices. We found that this model did not perform significantly
better than the baseline.

Since the basic AOA layer does not have any parameters, we believe the model was not powerful
enough for the dataset.

. Fully Connected Layer
*.« RNN Cell (Bi-GRU)
Embedding Layer

A

D
| |

.I
]

c o c3 oy cp

Figure 2: Architecture of BiDAF with AOA attention model

2.3 Bi-Directional Attention Flow

Next, we added a bi-directional attention flow layer (BiDAF) to our model [5]. This layer provides
attention weighting from contexts to questions as well as from questions to contexts. Unlike AOA,
BiDAF contains trainable parameters, which allows us to calculate a similarity matrix S, where S;; is
the similarity score between a context and a question hidden state pair, (c;, qj). The similarity score
is multiplied by a weight vector w € RN*M 50 §;; = w”'(ci;q;;¢: 0 q;) € R. Context-to-query
attention is calculated using the row-wise softmax of S as the weight for each of the question hidden
states g¢;; i.e. o' = softmax(S;.), and @; = Zjvzl alg; € R?". Question-to-context attention is
calculated similarly, where we calculate the softmax of the max of every row of §, i.e., m; = max;S;;,
B = softmax(m), and ¢’ = Zf\il Bic; € R2"_ Then, we concatenate the context vectors, context-to-
query vectors, the element-wise multiplication of the context and context-to-query vector, and the
element-wise multiplication of the context vector and the question-to-context attention to obtain the
output of the BiDAF attention layer: b; = [¢;;a;;¢; 0 a;;¢; o ¢’;] € R8". Finally, we pass the output
of this layer through a bi-directional LSTM layer.

We inserted a BiDAF layer in between the RNN hidden states and the linear layers of our original
AOA model. The architecture is shown in figure 2. For the BiIDAF model, we were able to implement
some computational optimizations that reduced the number of necessary parameters which restricted
the size of our overall model. The BiDAF layer led to a significant performance boost which we will
describe in the experiments section.

2.4 End Conditioned Start Prediction

Building on our combined BiDAF AOA model, we experimented with conditioned answer choices.
The Cross Entropy training loss for a particular answer can be broken up as follows:

L(0) = E(g.c.q)~sqQuap [1og (Po(alg, ¢))] 2

PG(a|Q7 C) = P@(istarta Z.end|q7 C) (3)

=P (Z.end|Qa C)PG (istart |iend7 q, C) “)

‘C(G) = IE(q,c,q)NSQUAD [_ 10g (Pe(iend|Q7 C)) - log (P0 (istart|ienda q, C))] (5)

In the original case, we treated the two distributions as independent, which is equivalent to the
assumption Py(istart|iend, q; ¢) = Po(istart|q, ¢). But we experimented with allowing our network
to condition its choices for the start index based on its choice for the end index.

First, we kept the model the same until after the final RNN, where we have D hidden states, where D
is the length of the context, which we denote as g1, g2, ..., gp. For the end distribution, we feed these
hidden states through a linear layer:

o5t = werdg, 4 bt Vj=1,2,..,D ©)

We then feed these final end feature representations into an AOA Softmax to produce, Yend, as
Jena = AOA(®S™ &5 . &4 q1.1). This is the same as before.

However, for the start distribution, s;q.¢, We also include the end index choice as an input feature by
concatenating h.,q = ¢,,, to each of the context feature vectors g, before feeding these vectors into
the start linear layer. That is:

end

pstart = yystart [hgj } +7 Vi =1,2, 0 end 7

Note that we also drop all indices after i.,q since we know isiqrt < feng- Then Ysiart =
AOA(Pstart pstart @f:f;"t, q1:Q)-

The inclusion of the end masking for the start distribution makes the start distribution non-
differentiable with respect to i¢,4. To train this network, we used the loss

[’(0) = IE(q,c,q)NSQUAD |:_ log (PO (iend|Q7 C)) - IOg (P0 (istartﬁenda q, C)>:| (8)

where i.,q = argmax g}jnd. Figure 3

2.5 Policy Gradient Loss

The addition of end-conditioned start prediction introduced a non-differentiability in our model.
The most technically sound way of dealing with this non-differentiable loss is to use reinforcement
learning (RL) instead of supervised learning to train our model.

For an RL formulation of this problem, we used the F1 score of the prediction as the model’s reward.
Our prediction network became a policy which takes in the question and context as a "state", and
outputs a probability distribution over answers as "actions". Our policy can be rolled out over one
episode by producing a single answer prediction. The policy gradient theorem as introduced in [7]
states that we can improve our policy network (in the sense that it will learn to achieve better rewards)
by following a policy gradient:

oV 9log(mg(als))
20 06

Notice that this equation simply scales the log probabilities of answer choices made in proportion to
the rewards we observe from those choices. In that sense, the RL formulation differs from supervised
learning in that it does not utilize the correct answer choice in calculating the loss, only the reward
from our answer choice. Furthermore, the reward can be non-differentiable as well, meaning we can
use the F1 score directly.

R(s,a) 9)

Legend
. Fully Connected Layer

".‘* RNN Cell (Bi-GRU)

B Selection Layer

‘e—i,mi
A

[|
g 9 9o
| | |
|

[
(X X = =)

] —
|

9:
d:

N L5 Q

I
e
-

B

G} c2 c3 ca]

Figure 3: Architecture of BiIDAF with AOA attention model and conditioned predictions

In order to evaluate our policy, we feed it examples from our dataset, sample from its answer
distribution, and record the F1 scores between the sampled answers and the true answers.

(¢,¢,a) ~SQUAD, a~ Py(-lq,c), r=F1(aa) (10)
We can then reinforce our policy to make higher rewarding actions more probable by minimizing
£(6) = ~Eqera [rlog (Pa(i|a,c)) + rlog (Pa(i*te"}i%, ¢,0))] an

2.6 Other improvements

We explored some other improvements, but did not add them to our final model due to memory and
size constraints. Nonetheless, they either performed as well as our baseline model or improved upon
its performance.

2.6.1 Character-level embeddings

To analyze results at the character level and increase robustness against unknown tokens, we imple-
mented character-level embeddings as described in the project handout and by Kim et. al. [3]

The idea behind character-level CNN’s is as follows: for each context and question, we encode each
word in the passage as a list of character IDs. Thus, each context can be represented by a matrix of
dimension context size by word length, where the maximum word length is a hard-coded parameter.
Then, we use these character IDs to look up trainable character embedding vectors to obtain the
character embedding representation of each word in a context. We pass the character embedding of
each word through 1-d convolutional filter with a set window size (also a user-defined parameter)
to filter the character embeddings. Finally, we use max-pooling across the convolutional outputs
for each character in the word to obtain the character-level representation of the word. Finally, we
concatenate the character-level representation of the word to the word embedding, and we use these
concatenated embeddings to train the neural network. We did not get a performance boost from
character-level embeddings using the same hyperparameters. However, the loss and EM/F1 scores for
character-level embedding were unstable relative to the performance of the regular word embedding
model, which suggests that we needed to use a smaller learning rate to optimize performance for
character-level embeddings.

2.6.2 Dynamic Co-attention

We explored using Dynamic Co-Attention [8] as an alternative to BiDAF. We start with context
hidden states ¢y, ...,¢y € R! and question hidden states g, ..., q,, € R. First, the question hidden
states are passed through a linear layer with the tanh nonlinearity to obtain projected question hidden
states ¢’ € R Vj € {1,..., M}. Then, trainable sentinel vectors for both context and questions

are added to the set of context and question vectors. Next, the affinity matrix L € RV +1xM+1 jg
calculated, with each element L;; = cTq. € R. Context-to-projected question and question-to-
context attention matrices are obtained similarly to the method for BiDAF. Finally we obtain second-

level attention outputs §; = Z]Ni "1'1 aj-b ;i € R! Vi€ {1,...,N}. The final step in coattention is to
concatenate the second-level attention outputs with the first-level context-to-question outputs, and

feed the concatenations through a bidirectional LSTM to obtain coattention encodings:
{uy,...,un} =biLSTM({[s1;a1], ..., [sn;an]})

. Coattention gave us a performance boost over our baseline attention-over-attention model, but not
as much as BiDAF. However it does support our hypothesis that weighted attention mechanisms are
very important for improving the performance of the model.

3 Experiments

3.1 Data analysis

We examined the lengths of contexts and questions in the dev set. We discovered that the preset
context length and question length were much longer than the majority of contexts and questions, so
we reduced the training context size to 250 from 60, and the training question size to 25 from 30.

When character-level encodings were added to the model, a similar analysis showed that maximum
word length could be limited to 20 characters. The high frequency of short tokens is due to tokens
such as "a", "the", and "’s" for possessives. 3.1

Context Length Frequency Question Length Frequency Word Length Frequency

Figure 4: Context length fre- Figure 5: Question length fre- Figure 6: Word length fre-
quencies quencies quencies

3.2 Results

Dev EM/F1 Scores from AoA, AoA + BiDAF, Baseline Attention and BiDAF

| Model | Best Dev EM/F1/Iterations |
Baseline Attention 0.251/0.356/14.5k
Attention-on-Attention 0.252/0.358/16.5k
AoA + BiDAF 0.421/0.574/10.5k
Baseline Attention + BiDAF 0.493/0.642/8.5k

3.3 Architecture Details

All linear layers had tanh activation functions. This is because the AOA layers computed the result
based on dot products with the query hidden states, which were also the result of tanh activations.
We also experimented with ReLLU activations and found it made little difference.

The hidden sizes of the context and query RNNs were always equal. The RNN after the BiDAF layer
was typically chosen to be 4 or 5 times the size of the context and query RNNs.

3.3.1 Hyperparameter Tuning

We found the best hyperparameters to use with our model through a combination of trial and error,
including a script to run a hyperparameter search on our better-performing models. This search
provided optimal values for learning rate (0.00183). We used ADAM to optimize our loss. Memory
limitations on the GPU limited the size of parameters such as batch size and hidden layer size. For
most of our training, we used batch size = 50 and hidden size = 64.

3.4 Architectural variants
We experimented with several variants of our conditioned answer model, including:

1. An additional RNN layer for the context encodings, after the BiDAF layer.
2. Larger embeddings.

3. An additional RNN layer for both the context encodings and the question encodings (shared
weights), after the embedding layer.

4. Not training the embeddings.
5. An additional RNN layer for the query encodings, after the BiDAF layer.

6. Larger hidden sizes at every layer.

The dev F1 and EM scores for of each of these variants are shown in figure [?].

dev/EM dev/F1

9 0.60C —
e Final RNN
Larger embeddings
Pre-encoder

No embed train
Question RNN
Larger hiddens

Figure 7: The dev F1 and EM scores of each of the model variants. Not all of these variants were
trained with the exact same hyperparameters. However, empirically we found that the learning rate,
regularization parameters, etc, had little effect on the asymptotic performance of the model.

dev/F1 train/F1
|\

Figure 8: The dev and training F1 scores of the RL model.

4 Error Analysis

4.1 Qualitative

We found that our model made some common mistakes on certain types of questions:

1. Ignoring surrounding words
e QUESTION: how many hours can one expect to ride the train from
newcastle to king’s cross 7

e TRUE ANSWER: about three

e PREDICTED ANSWER: three

e F1 SCORE ANSWER: 0.667

e EM SCORE: False
In some cases, the model predicts an answer that is very close but not an exact match
with the human answer. This decreases F1 and EM scores, even though the predicted
answer largely encompasses the meaning of the true answer. The model may need to be
more flexible in order to learn about accompanying words. This also goes to show that the
question-answering task is an inherently messy one - even a human could not achieve a
perfect score on the tasks so it is impressive that a machine can do this.

2. Poor question understanding
e QUESTION: what two member nations of the holy roman empire

received huguenot refugees 7
e TRUE ANSWER: electorate of brandenburg and electorate of the

palatinate

e PREDICTED ANSWER: england , wales , scotland , denmark , sweden ,
switzerland , the dutch republic

e F1 SCORE ANSWER: 0.000

e EM SCORE: False Again, the model demonstrates its limited vocabulary and capacity

to understand questions. It either does not understand "electorate" as a "place" entity,
or it has ignored the adjective "two" in the question statement itself. We believe this

example illustrates the importance of having both question-to-context attention as well
as context-to-question attention.

3. Entity Misclassification

e CONTEXT: extra pay is also given for teaching through the irish
language , in a gaeltacht area or on an island .

e QUESTION: what does teaching on an island result in 7
e TRUE ANSWER: extra pay

e PREDICTED ANSWER: gaeltacht area

e F1 SCORE ANSWER: 0.000

e EM SCORE: False

This example illustrates the complexities of language modeling. Here, model seeks an
answer to the query word "what", and presumably seeks an answer that could be classified
as a noun, such as "extra pay" or "gaeltacht area". However, the model is merely trying
to match prepositions (e.g. "in a gaeltacht area"). These types of errors belie problems in
word-level classification and challenges in training machines to truly understand language.
Perhaps a model with a phrase-based recognition system would perform better on these
types of errors.

4.2 Quantitative

We made several plots of average dev F1/EM score vs context length or query length and saw no
obvious correlation between the variables. We believe this is a good sign for the models because
correlations here would expose an obvious modeling limitation.

In general, we believe it would be much easier to narrow down on the exact weaknesses of our models
if we achieved higher performance.

5 Discussion

As shown from our experimental results, all of the model variants achieved very similar performance.
We conclude that most of the model adjustments are likely not worth additional computation required
to evaluate them.

The vanilla BiDAF layer provided the greatest power in all of our models. Given the performance of
our original model based on the AOA layer, we believe that the AOA model limited the performance
of our model, perhaps by limiting the size of our other parameters or diluting the strength of the
attention signal.

Future directions of research should focus on refining or expanding the notions of weighted attention.

5.1 Policy Gradient Results

Empirically, we saw that training our model with a reinforcement learning approach was much
more volatile than using simple supervised learning, see figure [?]. This likely due to the fact that
supervised learning directly uses the correct answer to form the gradient update. Conversely, RL
algorithms require an agent to explore its options and would need many more context, question,
answer, reward tuples in order to learn the correct answers. One-step policy rollouts simply do not
scale well with the dataset, as they have very high variance. We believe other RL approaches such
as ReasoNet [6] are successful because they make use of the policy many times per episode, which
allows them to form stronger gradients.

The high variance of the gradient is a known issue with the REINFORCE algorithm and there is
extensive literature on techniques for reducing the variance, such as estimating the performance of an
action with respect to a baseline. However, we saw it best not to pursue these approaches extensively
further, as they could have exhausted all our time and resources.

Acknowledgments

We would like to thank the CS 224N staff, especially Abigail See, for their direction and guidance
in this project, as well as the rest of the Stanford NLP group for providing the starter code and
infrastructure for the SQUAD competition. [4]

References

[1] Cs 224n default final project: Question answering. 2018.

[2] Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu, and Guoping Hu. Attention-over-
attention neural networks for reading comprehension. CoRR, abs/1607.04423, 2016.

[3] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-aware neural
language models. CoRR, abs/1508.06615, 2015.

[4] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions
for machine comprehension of text. CoRR, abs/1606.05250, 2016.

[5] Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. CoRR, abs/1611.01603, 2016.

[6] Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop
reading in machine comprehension. CoRR, abs/1609.05284, 2016.

[7] Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. Advances in Neural Information
Processing Systems, 1057-1063, 2000.

[8] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. CoRR, abs/1611.01604, 2016.

10

