Question Answering with Attention

Stephanie Dong Ziyi Li
Stanford University Stanford University
sxdongll@stanford.edu ziyil@stanford.edu
Abstract

Machine comprehension (MC) has been a seminal task in the field of Natural
Language Processing. In this paper, we explore various deep neural network com-
ponents and their effectiveness when applied to a standardized MC task, via the
Stanford Question Answering Dataset (SQUAD).

1 Introduction

Question answering is an important task in natural language processing. Many research work has
been done in building effective reading comprehension systems for SQuAD. The SQuAD webpage
(https://rajpurkar.github.io/SQuAD-explorer/) shows the performance of many
systems. The top performance models use Reinforced Mnemonic Reader[1], R-net [2], and other
form of attention. In January 2018, a model surpasses human performance for the first time.

In this project, we explored various deep neural network components and their effectiveness when
applied to question answering. We implemented models with coattention network, and then exper-
imented with adding self-attention layer or pointer network. We also studied the effect of tuning
different hyperparamters. In the end, we analyzes our results and different types of errors.

2 Data

The SQUAD dataset consists of a public training set and public dev set. There is, in addition, a
private test set on which trained models are evaluated when submitted to the SQUAD competition.
Combined the datasets compose of over 100,000 questions gathered by crowdworkers contexted
on a set of Wikipedia articles. The problem of predicting an answer is constructed as selecting a
continuous span within the context paragraph that best answers a question.

We performed numerical analysis on the train and dev question, context and answer datasets. Table
1 shows the word count of the 99¢" percentile in each dataset.

Dataset 99 Percentile Word Count
Train Question 23

Dev Question 23

Train Context 325

Dev Context 376

Train Answers 21

Dev Answers 18

Table 1: 99 percentile word count of Train, Dev datasets.

We additionally analyzed the distribution of word contexts. As shown in Figure 1, the word count
distribution of context and questions follows a skewed Gaussian distribution, where as the distribu-
tion of answer length decreases exponentially from 1. Since over 55% of answers are one to two

words, most questions in the dataset can be considered “simple.” An analysis on the distribution of

Dev Questions Word Counts

Dev Questions Word Counts

~~ 99 Percentile is 23.0 Count Occurances Rate
= yord_count 11.0 1271.0 0.127
- 10.0 1242.0 0.124
9.0 1148.0 0.115
" 12.0 1024.0 0.102
g 8.0 999.0 0.1
g 5.0 898.0 0.09
& 7.0 677.0 0.068
g 14.0 658.0 0.066
£ 15.0 509.0 0.051
g 16.0 390.0 0.039
°© 6.0 364.0 0.036
17.0 308.0 0.031
18.0 198.0 0.02
5.0 169.0 0.017
19.0 155.0 0.015
B 0
Dev Contexts Word Counts Dev Contexts Word Counts
== 99 Percentile is 376.0 : Count Occurances Rate
0010 = vord_count ! 98.0 182.0 0.093
i 116.0 172.0 0.088
! 125.0 158.0 0.081
» 0008 i 102.0 135.0 0.069
g . 111.0 134.0 0.068
g i 107.0 126.0 0.064
5 0006 i 119.0 119.0 0.061
g ! 124.0 119.0 0.061
g 1 114.0 118.0 0.06
g 0004 | 103.0 118.0 0.06
e ! 108.0 118.0 0.06
i 99.0 117.0 0.06
o0ez ! 117.0 117.0 0.06
i 105.0 116.0 0.059
m— a4 , 104.0 113.0 0.058
400 500
Count
Dev Answers Word Counts Dev Answers Word Counts
05 i —— 99 Percentile is 18.0 Count Occurances Rate
: == yord_count 1.0 3187.0 0.312
1 2.0 2799.0 0.274
! 3.0 1634.0 0.16
g i 2.0 859.0 0.084
g . 5.0 515.0 0.05
g ! 6.0 339.0 0.033
503 i 7.0 228.0 0.022
g ! 8.0 158.0 0.015
Eos 1 9.0 119.0 0.012
3 H 10.0 106.0 0.01
S i 1.0 68.0 0.007
i | 12.0 64.0 0.006
! 13.0 54.0 0.005
1 14.0 42.0 0.004
i - s , , 15.0 30.0 0.003
o 5 10 15 20 p) 30

Count

Figure 1: Distribution of word count on Dev context, question and answer datasets.

the first word in in the question dataset shows us the distribution over the type of questions.

50% of the question start with ”What”.

Dev Questions Head

Occurrences

1000

at |
if

§ 8 &

u — u
£ 2E58°¢¢2 24 g5 " &
«;SEE- o £ s g T & g
£ £ E g
Word Count

Over
Dev Questions Top Head Words
Head Occurances Rate
what 4704 0.5
who 1057 0.112
how 1045 0.111
when 676 0.072
which 451 0.048
in 436 0.046
where 431 0.046
the 233 0.025
why 150 0.016
on 42 0.004
to 42 0.004
by 38 0.004
along 36 0.004
whose 34 0.004
at 31 0.003

Figure 2: Distribution of first word of questions in the development set.

3 Model Components

3.1 RNN Encoder Layer

Starting from the baseline model provided in CS 224N Default Final Project Handout, we built the
RNN encoder layer with LSTM. Let the context be represented by a sequence of d-dimensional
word embeddings [x1, ..., zy] € RY, and the question be represented by [y1, ..., yn] € R. Then we
use bidirectional LSTM to produce a sequence of forward hidden states and a sequence of backward
states.

{1, &, ..., cx, én} = bILSTM({21, ..., 2N })
Next, we concatenate the forward and backward hidden states to obtain context hidden states ¢; and
the question hidden states g;:
¢ = [c:,g] € R*" vie{1,..,N}
g = [q},Yj] € R* vje{1,.., M}

3.2 Coattention Layer

We implemented the coattention layer from Dynamic Coattention Network [3]. It attends to the
question and the context simultaneously, and then fuses both attention contexts.

First, we obtain projected question hidden states qg- = tanh(Wgq; +b) € R?"_ Then we add sentinel
vectors cg, gp which allows the model to not attend to any particular word in the input. Next, we
compute the affinity score for each pair (c;, q;-) of context and question hidden states:

Lij= cqu;-, where L € RINFDx(M+1)
With the affinity matrix, we can compute attention outputs for both directions. For Context-to-
Question (C2Q) Attention, we calculate the outputs a; as follows:
M+1

o' = softmaz(L;.) € RMHL q; = Z aé—q; € R?h

5%

j=1
Similarly, for Question-to-Context (Q2C) Attention, we calculate the outputs b; as follows:

N+1
B9 = softmaz(L. ;) € RN T b; = Z Blc; e R*

i=1

Then we can calculate the second-level attention outputs s; as the weighted sums of the Q2C and
C2Q outputs.
M+1

8; = Z a?-bg € R?"
Jj=1

The final step is the fusion of temporal information to the second-level attention outputs via a bidi-
rectional LSTM. The overall output of the Coattention Layer is:

{uy,...,un} = biLSTM({[s1; a1], ..., [sn; an]})

3.3 Self Attention Layer

We implemented the a modified version of Self Matching Attention layer from R-Net [2] using
dot-product attention instead of additive attention. It attends the context to itself.

First we obtain context representations from the previous network architecture component
{v1,...,vn} € R, where each v; represents the context location i € {1,..., N} .

o
I

i = ReLU(W;v;) ReLU(Wav;) € R

¢ = softmax(e’) € RV

N
a; = E Ol;-Vj € RZ
=1

Q
I

Here W, and W, are trainable weights. The overall output of the Self Attention Layer is:

{uy,...,un} =biLSTM({ay, ...,an})

3.4 Softmax Output Layer
We apply a fully connected layer with ReLU non-linearity to each output of the previous network
architecture layer and apply a ReLU non-linearity.

b, = ReLUWrcw; +vrc) €RM Vie{l,.,N}

Here W pe, Wy, Vi and ug,y are trainable weights. We then apply a softmax layer to produce
probability distribution over start indicies.

start
7

logits$™ = wZl b/ + U eR Vie{l,.,N}
p™" = softmax(logits®™) €R Vie{l,..,N}

We compute a probability distribution p the same way, with Wepq and Ueng

Start Position End I;osit:ion
Y
Softmax + logits Softmax + logits Output Layer

= >

[. Fully Connected Layer

/ X Coattention Layer
B a

2-La;
f ? et
t t ¢t
] 3] [[0 Glove Word
I_'_l |_'_| Embeddings
Question Context

Figure 3: Architecture of Our Model with Coattention Network

3.5 Pointer Network Output Layer

We implemented the Pointer Network layer from R-Net [2], which depends on the predicted start
index distribution to predict the end index distribution.

We first compute the hidden state at time zero via attention on the question hidden representation.

55 = vgtanh(quj)

a; = softmax(s)
M

ho = Zain
i=1

We then compute the start distribution via additive attention on the context representation of the last
layer, {vy, ...,vx} € R, where each v; represents the context location i € {1, ..., N} and h.

;= vl tanh(W v; + W ho)

p™™" = softmax(s’)

We then compute the next hidden state via p*2"

time step.
M
start
Gl = E b vy
i=1

h1 = GRU(ho, 01)

and context representations by runing a single GRU

From h;, we then use additive attention on the context representation to compute the end index

distribution.

s;’ = v?tanh(chj + Wyhy)

P = softmax(s”)

Start Position End Position
A
GRU —
—1
E=) | =)

[v tanh(Wg q;) I [vfmnh(wcwwhho))]

4 L1

Oo0oano oooano
l_l_' lﬁ_'
Net.png Question Context

Figure 4: Pointer Network

4 Experiments

4.1 Performance Comparison of Network Architectures

Table 2 shows the performance of the models that we experimented.

Among these models, the default final output layer is the Softmax Output Layer, except for the 2-
layer LSTM + Coattention + PointerNet model, which uses the Pointer Network as the final output
layer.

Model F1 Score EM

2-layer LSTM + Coattention + PointerNet 73.057 62.498
2-layer LSTM + Coattention + Self-Attention 72.664 62.233
1-layer GRU + Coattention + Self-Attention 69.578 58.821

2-layer LSTM + Coattention 73.488 62.857
1-layer GRU + Coattention 68.569 56.547
2-layer LSTM + Basic Attention 48.279 39.612
Baseline (GRU) 43.341 34.361

Table 2: Performance Comparison on Dev Set

4.2 Test Time Optimization

We evaluated 3 different techniques for choosing the start index and end index from their respective
predicted distributions. Our baseline technique was independent argmax on start distribution and
end distribution.

Informed by our analysis on 99 percentile word count, we applied a dependent argmax that chose
the end position based on the chosen start index. We first take the argmax over the predicted start
distribution as the start index. Given the start index, we set all end index probability of indicies
before the start index and all indices more than 21 words after the start index to zero, since 21 is the
99 percentile word count for the dev answers dataset. This leads to an 3 point increase in F1I/EM
scores over the baseline technique for our model architectures.

The third technique we explored was a K-factor beam search on the start and end distributions,
returning the start index and end index with the highest probability sum. In this case, we first
compute the top K argmax indices for start and end index independently, then we iterative over the
K? possible start-end index pairs and return the pair with the highest probability sum, that satisfies
the relational constraint between start and end index of the technique in the previous paragraph. We
found this K-factor beam search to run much slower compared to the simple relational constraint
above and only offered within a +/- 0.5 change in performance.

Based on this evaluation, we chose the second technique of simple relational constraint for our final
model, for it’s speed of execution and performance improvement.

4.3 Hyperparameter Tuning
4.3.1 Optimizer

We experimented with Stochastic Gradient Descent optimizer with different learning rates, e.g. 0.1,
0.5, 0.8. We found that SGD optimizer does not improve the performance. The best performance
we obtained with SGD is F1/EM equals 61.555/50.927 with learning rate 0.5.

We also found that Adam optimizer usually converges faster and requires less hyperparame-
ter tuning. The performance of SGD optimizer largely depends on the learning rate. The reason that
SGD optimizer does not perform better might be that the learning rate we picked is not optimal.

4.3.2 Embedding Size

We experimented with embedding size 200, and got out-of-memory error with batch size 100. Then
we used embedding size 200 with batch size 80. We obtained 60.391/49.016 as F1/EM score. Thus,
increasing embedding size didn’t improve the performance of our model.

4.3.3 Dropout Rate

The default dropout rate is 0.15. We see that there are overfitting in our model, so we decided to
experiment with a larger dropout rate. The performance does not improve with dropout rate 0.2:
F1/EM=61.3/50.237. The reason might be that the 0.2 is too high and we are adding too much
regularization. We think that other regularization techniques may be helpful, such as adding /> norm
constraints to weight vectors.

4.3.4 Context and Question Truncation Length

Informed by the analysis on word counts of context and answers, we trained a 2 layer LSTM model
with CoAttention limiting the max question length and the max context length to their respective 99
percentile word counts. This resulting model performed on par with the single GRU layer CoAtten-
tion model. The same network architecture with a max context length of 600 and a max question
length of 30 performed 5% better.

We observe at 99 percentile, the truncation of context and question is too aggressive to maintain
performance.

4.4 Error Analysis

4.4.1 Correct Start Position but Wrong End Position

Example:

e CONTEXT: To remedy the causes of the fire, changes were made in the block ii spacecraft
and operational procedures, the most important of which were use of a _nitrogen/oxygen_
mixture instead of pure oxygen before and during launch, and removal of flammable cabin
and space suit materials. The block ii design already called for replacement of the block i
plug-type hatch cover with a quick-release, outward opening door.

e QUESTION: What type of materials inside the cabin were removed to help prevent more
fire hazards in the future?

e TRUE ANSWER: flammable cabin and space suit materials
e PREDICTED ANSWER: flammable cabin and space suit materials. The block ii design

We see several examples where the predicted answer has correct start position but it’s longer than
the true answer. So the model fails to identify the correct end position. In the above example, it also
fails to identify the end of a sentence. We think that adding interaction between start position and
end position could help with this problem. For example, we can condition end position on the start
position as mentioned in the handout.

4.4.2 Wrong Position of Attention
Example:

e CONTEXT: In early 2012, nfl commissioner roger goodell stated that the league planned
to make the 50th super bowl “’spectacular” and that it would be an important game for us
as a league”.

e QUESTION: What one word did the nfl commissioner use to describe what super bowl 50
was intended to be?

e TRUE ANSWER: spectacular
e PREDICTED ANSWER: us as a league

Our model did choose an answer from the words of the NFL commissioner, but it failed to understand
the meaning of “one word” in the question. With one coattention layer, it didn’t capture the complex
interaction between question and context. So adding more layers to recursively compute Context-
to-Question and Question-to-Context attention might be helpful in this case.

5 Conclusion

We explored various neural architectures and optimization techniques on the task of end-to-end
machine reading comprehension task presented by Stanford Question Answering Dataset.

From our network architecture evaluations, we can conclude that a 2-layer LSTM offers a defini-
tive increase of F1 and EM scores by approximately 5. Likewise, Coattention offers a definitive
performance improvement over basic attention. Stacking various attention components will not nec-
essarily lead to better performance. Without a large effort in hyperparameter optimization, multiple
attention components may lead to a loss of performance, as show in our results.

Truncation of max question length and max context length may be an effective technique to increase
the speed of traning. However, it is easy to over truncate and lead to an overall decreased in model
performance.

Upon evaluation of predicted samples for which our best model produced an incorrect answer, the
majority of errors where caused by the model predicting an answer that is too detailed or not detailed
enough compared to the ground truth answer. These are cases where the F1 score of the incorrect
sample is non-zero, and the predicted answer is relevant enough that a human reviewer may consider
the predicted answer as correct. For this class of prediction error, it would be helpful if the training
dataset can be augmented with multiple alternative ground truth answers per question-context par,
so the model can learn to balance between multiple forms of the “correct” choice to learn.

Another less common but much more important class of prediction error is the case where the F1
score is zero, and the model gets the answer completely wrong. Upon inspection, it appears that
the majority of zero F1 score prediction have a complex question, where the model predicted some
answer more related to the supporting clause of the question instead of the main subject of the
question. We suspect these errors are due to the model not being able to identify the main subject
of complex question. We propose that augmenting the question word embeddings with dependency
parse tree of the question will help this class of errors. However, we were not able to incorporate
question dependency as feature in our model architectures in a way that will train. As future work,
we hope to explore different techniques of incorporating question dependency, part of speech tag,
and other features to our existing model architectures and believe these additional features will lead
to an increase in model performance.

Acknowledgments

We would like to thank all CS224N teaching staff for a great class experience.

References

[1] M. Hu, Y. Peng, and X. Qiu. Reinforced Mnemonic Reader for Machine Comprehension. ArXiv e-prints,
May 2017.

[2] Microsoft Research Asia Natural Language Computing Group. R-net: Machine reading comprehension
with self-matching networks. 2017.

[3] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question answering.
CoRR, abs/1611.01604, 2016.

