Combining Bidirectional Attention Flow and
Attention Pooling Pointer Networks for High
Performance on the SQuAD Challenge

Anoop Manjunath Kiko Ilagan
amanjuna@stanford.edu ilaganf@stanford.edu

Abstract

Machine reading comprehension is an important task to solve en route to a gen-
eralized question answering system. The Stanford Question Answering Dataset
(SQuAD) challenge is a popular challenge for machine reading comprehension.
In this paper, we present a deep recurrent neural network architecture that utilizes
bidirectional attention flow and an answer pointer network to achieve 74.605 F1
and 64.219 EM scores on the SQuAD challenge.

1 Introduction

1.1 Task Definition

The goal of SQuAD is to create a model that, given a context passage and a question about the
passage, can correctly provide the start and end word of a continuous string of words constituting
the answer within the context passage.

1.2 Background/Previous Work

The original SQUAD paper was published in 2016 and has since sparked much research progress
on the task of reading comprehension. As of March of 2018, models, particularly the Hybrid AoA
ensemble reader, are quickly approaching human performance [1].

Our model in particular draws upon and extends three major avenues of active research in the
SQuAD task: attention, out of vocabulary (OOV) management through character level embeddings,
and probabilistic condition of end word choice based upon start word prediction.

Attention is a powerful technique employed prolifically in the SQuAD task in almost all top models.
In particular, we build our attention framework off of the Bi-Directional Attention Flow (BiDAF)
framework for attention with context word embeddings being augmented with attention flowing both
between the question and answer and answer to question [3].

The presence of words outside of the model vocabulary is a challenging obstacle in the question
answering task. One popular technique for dealing with these OOV words, pioneered by Yoon Kim
for the task of sentence classification, is augmenting the model’s word embeddings with trainable
character level embeddings generated from a convolution over each words’ characters [2].

Another novel technique that has been shown to improve performance on SQuAD is conditioning
end word prediction on the model’s start word prediction. This improves performance by allowing
the end word prediction to access the information used by the start word. In this paper we build
upon the conditioning methods explored out by the Match-LSTM and Answer Pointer Model [4] as
well as the R-net model [5].

In addition to implementing each of the above techniques among others, our model extends the
existing research by developing each of the above techniques further and integrating aspects of
different models in novel fashions.

2 Model Architecture

Our model’s architecture can be broken down into several distinct layers, each of which was devel-
oped separately and cumulatively added to the baseline. We discuss each layer further:

Start || End
Softmax
|

%.F i
1

—
—

LSTM

LSTM

yyYv

f A A F'y A ?

EEREE]

Questlon Context

Figure 1: Diagram of our model’s architecture

2.1 Word/Character Embedding Layer

For a single SQuAD example (context, question, answer), the context and question are both
represented as sequences of pre-trained d-dimensional GloVE embeddings (we use d = 300)
z1,...,zy € R%and yy,...,ynr € RY, respectively. Furthermore, for each word w comprised of
characters ¢y, ..., cr, we create a character-level encoding emb pq,(w) € R0 by performing 1-
dimensional convolution with 100 filters of size 5 and same padding on each word. This character
level embedding is then concatenated with the word embedding to create the hybrid embedding
inputs z* and y.

2.2 Encoding Layer

The hybrid embeddings are then used as input for a single layer bidirectional LSTM encoding layer:

(&,%5,...en, &8} = BiLSTM({z4, .2)
{ad, %, ..ad, o} = BiLSTM ({yi, ..yx })

We concatenate these forward and backward hidden states to obtain the context hidden states ¢; and
question hidden states g;:

¢ =& vie1,.., N}
g =@ 15G1Vi € {1,.... M}

2.3 Dual Bidirectional Attention Layer

We then apply bidirectional attention to the context and question hidden states. Following Seo et
al., we calculate a similarity matrix S that contains similarity scores for every pair of context and
question states (¢;, q;):

Si; =wg [cillgjllci 0 g;] €R

Where w; is a learnable weight vector. We then perform Context to Question (C2Q) and Question
to Context (Q2C) attention using S. Forall i € {1, ..., N}:

of = softmax(S;.) € RM

M

o' =2 a5
j=1

m; = maijij

B = softmaz(m)
N
= Z ﬂzcz

=1

We then use these attention outputs to create the blended context representation b = [c;||a;||c; o
a;||¢; o ¢]. We also perform a parallel computation of bidirectional attention where we flip the roles

of context and question to obtain blended question representations bQ [g5llajllg; o ajllg; o cg]-

2.4 Post-Attentional Modeling Layer

We then use the blended representations as input to a two layer bidirectional LSTM network to
capture the relationships between context words after conditioning on the query.

{7, 51,....,78, f5} = BILSTM(BiLSTM({}{, ..,b5}))
{5, 8§,..500, 1} = BiLSTM(BiLSTM({b%, .., b3, }))

Like in the embedding layer, we concatenate the forward and backward hidden states for each con-
text word and each question word to obtain the post-attention context hidden states r; and post-
attention question hidden states s;:

= [7||¥] Vi € {1,..., N}
= [5;115] Vi € {1, .., M}
2.5 Attention Transforming Answer Network Qutput Layer

Now that we have the post-attention hidden states, we can use them as inputs to a unidirectional
answer RNN, which is run for exactly two time steps. The initial hidden state i of this answer

network is the output of a dense fully-connected layer that takes all the post-attention question
hidden states s as input, with a tanh activation:

ho = tanh(Wss + bs)

This effectively ”pools” then transforms the post-attention output. Next, at time step 1, the answer
network uses the initial hidden state and a linear combination of all the post-attention context hidden
states to calculate a score vector v; (which for this simple RNN is equal to the new hidden state /)
that can be subsequently put through a softmax function to obtain the start location probability
distribution:

vy = tanh(Wpr + Wiho + b,) € RY

We can then get the start probability distribution: P(start) = softmaz(v1). This distribution is
then used to perform attention - let p represent P(start):

N
U = Zpﬂ“i e RY

i=1

The resulting context conditioned on the start distribution is then fed as the input for time step 2 of
the answer network, which calculates the end score vector vs:

vy = tanh(W,u + Wyhy + b,)

We can then obtain the end distribution - P(end) = softmax(vs)

2.6 Predictions

At test time, we take the argmax over the start distribution to obtain the start location, then take the
argmax of the slice of the end distribution that corresponds to locations within 38 words of the start
location. 38 was chosen as the maximum distance between the start and end prediction as this is the
length of the longest answer in both the training and development sets.

3 Experiments

3.1 Data

First, we analyzed the given data to familiarize ourselves with the task. This analysis also has the
added benefit of helping us choose intelligent default numbers for certain hyperparameters, namely
the maximum allowable context length and question length. First, we examined the lengths of the
contexts in the training and development sets:

train.context dev.context

50000 4 6000

5000 4
40000

4000
.. 30000

Coun
Count

3000
20000
2000

10000 1000

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700
Length (# tokenized words) Length (# tokenized words)

Figure 2: Length of contexts in the training and development sets
The contexts have mean lengths of around 138 words and 142 words in the training and dev sets,

respectively. Both sets have contexts that reach around 700 words, but the vast majority of contexts
do not exceed 500 words long. Performing a similar analysis on the questions:

train.question dev.question

50000 4

40000

30000 4

Count
Count

20000 4

10000

20 30 40 50 60 10 15 20 25 30 35
Length (# tokenized words) Length (# tokenized words)

Figure 3: Length of questions in the training and development sets

Question lengths averaged around 11.3 and 11.4 for the train and dev sets, respectively, with maxi-
mum lengths of 60 and 34 words. Note that the sets actually both have fairly similar distributions -
the outliers in the training set throw off the relative scales of the histograms.

Lastly, we performed an analysis of the answer span lengths and span locations in the context. First
span length:

train.span

dev.span
70000 8000
60000 7000 4
50000 4 6000
™ « 5000
é 40000 §
o © 4000
30000 4
3000
20000 2000
10000 1 1000
0 T 0
0 10 20 30 40 0 5 10 15 20 25 30 35
Length (# tokenized words) Length (# tokenized words)

Figure 4: Length of answer spans in the training and development sets

Mean answer lengths were 3.4 and 3.2 words for the training and development sets, respectively,
with maximum answer lengths of 46 and 37. Both sets are fairly dramatically skewed right. Further-
more, since most of the answers are quite short, it is not entirely unreasonable to approximate the
location of the span in the context by just measuring what proportion of the way through the context
contains the end index of the answer.

Training Span Locations Development Span Locations

12000
1400

10000 1200

8000 1000

Count
Count
]
o

6000

4000

2000

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Proportion of context where span ended Proportion of context where span ended

Figure 5: Span locations in the training and development sets

The average end position is about 45% and 44% of the way through the context for the training
and development sets, respectively. The means coupled with the histograms tell us that most of the
contexts tend to appear in the first half of the context, with a noticeable spike of answers appearing
at the very end of the context.

With the insights from these data, we selected a cut-off context length of 500 and question length of
35.

4 Results

4.1 Constructive Analysis

Given the modular nature of model, we build it up in sequential stages, evaluating model perfor-
mance on the dev set at each step. As a result, we have some interesting analysis of the features that
most contributed to model success shown below:

Model Improvement F1 (%) | EM (%)

Baseline 43.8 34.79
LSTM 44.7 36.3
Attention 52.5 41.7
CNN 60.2 47.4

Post-Attention BiILSTMs | 69.431 | 60.423
Output conditioning 73.953 63.586
L2 regularization 73.553 62.791

Table 1: Progress of our model’s performance as specified improvements were added

The majority of additions monotonically improved performance. The attention, character-level
CNN, and post-attention RNNs made particularly large differences in model performance. The
switch to LSTMs and more interestingly, the addition of output conditioning and L2 regularization
offered only meager improvement. We also evaluated the final and baseline model performance on
the dev set, stratified by question type:

Baseline Model Performance

Who | What | When | Where | Why | Which | How
F1 | 385% | 39.5% | 48.0% | 35.5% | 28.0% | 43.3% | 50.0%
EM | 34% 28% 42% 26% 8% 32% 35%

Final Model Performance

Who | What | When | Where | Why | Which | How
F1 | 745% | 71.7% | 74.6% | 65.8% | 53.7% | 69.2% | 69.9%
EM | 66% 57% 63% 52% 21% 58% 46%

Table 2: Model scores on 100 randomly chosen examples of each question type

Performance on each of these question types is varied due to their differing difficulties and
frequencies in the training data. For example, "why” questions are the most difficult questions
linguistically since they tend to require greater comprehension of the passage and reasoned decision
making, and they are also the least frequent type of question in the data, comprising less than 2% of
all training examples.

We now consider each improvement more closely:

411 LSTM

The slight uptick in performance from the addition of LSTMs versus the previous GRUs came from
better results on questions with longer answers and passages where the answer to the question was
located further away from the location of question words in the context. We hypothesize that this
difference in performance is due to the LSTMs superior ability to gate information as compared to
GRUs, however training time did increase substantially.

4.1.2 Attention

Introducing bidirectional attention into the model gave us our first significant boost in performance.
We saw the greatest performance improvement on ”which” questions upon implementing this mod-
ule, which likely can be attributed to the model’s new, enhanced ability to more carefully focus on
the relevant parts of the question and context to pick correct answers out of a list.

4.1.3 CNN

For this improvement, we increased our default GloVe embedding size from 100 to 300 and imple-
mented a character-level CNN to further augment the expressiveness of the input to our model. We
consequently saw an overall increase in performance, particularly for who” and "when” questions.
We hypothesize that the character level representation of names and dates are more helpful for dis-
tinguishing the answer among other names/dates, since they tend to appear in similar contexts and
thus are not easily distinguished with normal word vectors. The learned, augmented representations
from the CharCNN combat this issue.

4.1.4 Post-Attention BiLSTMs

We realized that we were wasting some information from the attention layer - intuitively, the mod-
ified context and questions conditioned on each other could provide valuable information. We
thus implemented a post-attention 2 layered bilateral LSTM and saw fairly significant improvement
across the board.

4.1.5 Output conditioning

We then decided to implement an answer network and some dense layers that ultimately allow us to
condition the model’s end prediction on the start prediction. Previously, such predictions were made
independently with two separate softmax functions. However, the fact that an end prediction should
never go before a start prediction tells us that there is a conditional relationship between the two
in the real world - implementing this final layer to capture this intuition gave us our last noticeable
boost in performance.

4.1.6 L2 regularization
L2 regularization did not significantly improve performance, even after training for 15 thousand

iterations. This indicates that dropout level of 0.2, which we applied to almost all the model’s
learnable parameters, is sufficient for preventing overfitting.

4.2 Error Analysis

4.2.1 Baseline

In order to better understand our model’s performance and how to improve it, we regularly examined
its qualitative outputs. In particular, for the baseline we observed the following. Note that the word
chosen as the start is underlined while the end is italized.

Issue

Example

Solution

The model predicts an end
locations before beginning
locations

Q: Who was abc’s third major
rival in 19497 A: dumont
television company

Constrainted span selection

The model performs poorly
when answering phrased in
the form of negations

Q: What can the non-elected
members from the scottish
government not do

Context to question and
question to context attention
to negations

Poor performance when

Q: What was the name of the

Character level CNN

identifying answers that are
rare words

3d system effect in dimension
in time? A: pulfrich effect

4.2.2 Final Model

After developing the model in full, we examined the output to determine areas of improvement:

Issue Example Solution
Model answer is reasonable Q: Who acts as the More sophisticated search of
but incomplete coordinator? A: the architect | high likelihood spans

Truth: the architect or
engineer

A: constant velocity was
associated with a lack of net
force, Truth: a lack of net
force

Q: Which architect, famous
for building his work on St.
Paul’s Cathedral, is featured?
A: Carlo Lodoli, Truth: Inigo
Jones

The model overruns the
ground truth answer
prediction

small penalty for answers
above a certain length

Shared context between
certain questions

Model cannot answer
question that requires
knowledge from outside of
context

There were other errors that involved poor labeling of question-answer pairs, but such examples are
unimportant.

5 Conclusions

We present a model that combines aspects from various high-performing SQuAD models and have
shown that such a model produced from this combination also performs well on the challenge. Each
modular improvement was brought about to match human intuition about the challenge, but there
are further improvements yet to make. Many of the errors yet to be overcome can be attributed to
insufficiently nuanced start/end location prediction - the model can identify relevant content, but
cannot narrow its focus enough. In the future, we would like to experiment with more sophisticated
start and end conditioning (likely using joint probability distributions). Furthermore, it is likely
that allowing the model to use self-reference and self-attention will allow it to better focus on the
relevant words for prediction and stop overrunning the correct prediction length.

References

[1] Cul, Y., CHEN, Z., WEL, S., WANG, S., L1u, T., AND HU, G. Attention-over-attention neural
networks for reading comprehension. CoRR abs/1607.04423 (2016).

[2] KiM, Y. Convolutional neural networks for sentence classification.
(2014).

[3] SEO, M. J., KEMBHAVI, A., FARHADI, A., AND HAJISHIRZI, H. Bidirectional attention flow
for machine comprehension. CoRR abs/1611.01603 (2016).

[4] WANG, S., AND JIANG, J. Machine comprehension using match-lstm and answer pointer.
CoRR abs/1608.07905 (2016).

[5] WANG, W., YANG, N., WEI, F., CHANG, B., AND ZHOU, M. Gated self-matching networks
for reading comprehension and question answering. In ACL (2017).

CoRR abs/1408.5882

