Diverse Ensembling for Question Answering

Benjamin Cohen-Wang, Edward Lee
Department of Computer Science
Stanford University
{bencw, edleel}@stanford.edu

Abstract

In this paper we explore ensembling of different question answering systems,
which significantly improves performance over any individual model. We propose
a diverse ensemble of variants of three high-performing SQuUAD model “fami-
lies”: the BiDAF Network [4], the Mnemonic Reader [2], and ReasoNet [5]. Our
results support the claim that diverse ensembles of models, such as an ensem-
ble of one model from each family, generally outperform less diverse ensemble
of high-performing models, such as an ensemble of three models from the same
high-performing family. Our final ensemble of three models from each family gets
an F1 score of 79.5 and an EM score of 70.0 on the validation set.

1 Introduction

Machine Comprehension (MC) and Question Answering (QA) tasks have grown in popularity in
recent years due to many new developments in Natural Language Processing (NLP) and the creation
of large question answer datasets. Many high-performing MC models have been created that per-
form on near-human capability in tests using datasets like the Stanford Question Answering Dataset
(SQuAD) [3]. One of the main threads throughout model performance has been the idea of an en-
semble. Namely, by training multiple models with different initializations, performance can improve
by anywhere from 1-3%, as different initializations allow models to learn slightly different repre-
sentations and thus slightly different solutions for each datapoint [1, 4]. In this paper, we attempt to
take it a step further, ensembling not just models with different initializations, but also models with
different hyperparameters and different mechanisms entirely.

2 Related Work

The model we propose is largely based on variants of existing high-performing SQuAD models.
In particular our model heavily relies on the bidirectional attention flow layer discussed in Bi-
Directional Attention Flow for Machine Comprehension which produces a query-aware context layer
that incorporates both context-to-question and question-to-context attention [4]. We also emulated
and implemented variants of the iterative reasoning techniques described in Reinforced Mnemonic
Reader for Machine Comprehension [2] and ReasoNet: Learning to Stop Reading in Machine Com-
prehension [5]. Finally, we drew ideas for our ensemble from Neural Network Ensembles [1], which
discusses the benefits of constructing an ensemble of diverse models.

3 Model

Our model consists of an ensemble of nine different models, broken down into three model fami-
lies with individual models within each family trained with different hyperparameters. By training
different types of models with different sets of hyperparameters we increase the diversity of our
ensemble, which has been shown to improve performance [1].

Start End

Output Layer I I Character
2 Y Dense + Dense + gz\é:;\é?r:g CNN Word
Softmax Softmax Embedding
Model-Specific Layer Simple BiDAF or Mnemonic Reader or
ReasoNet

Modeling Layer

Bi-LSTM

5 5 P
Query2Context and Context2Query
Attention Layer Attention

Contextual
Embedding Layer

T
.1
a3
I
&

Embedding Layer

Figure 1: BiDAF Base Model

The three models use the same architecture to encode a query-aware context representation, but each
run different operations on the output of this shared architecture to produce final distributions for
the start and end positions of the answer.

3.1 Common BiDAF Layer

The three model families share the embedding, contextual embedding, attention, and modeling lay-
ers defined by the BiDAF network [4]. We chose to incorporate these layers as the base architecture
for our model families because it effectively models interactions between the context and query with
only one attention layer. Though two of our model families further relate the context to the query,
we found that passing a query-aware context initially improves performance even for these models.
The following visualizes this common architecture and its relationship to the model-specific layer
that follows.

Embedding Layer: The embedding layer represents each word in the context and query as a high-
dimensional vector by concatenating its pre-trained 100-dimensional GloVe embedding with 100-
dimensional character-level word embeddings. These character-level embeddings are computed by
applying two convolution layers to 20-dimensional character embeddings and max-pooling over the
characters of every word.

Contextual Embedding Layer: The contextual embedding layer uses a bidirectional-LSTM with
200-dimensional hidden states, using individual word embeddings as inputs and sharing parameters
between the context and query. The resulting outputs incorporate interactions between different
words.

Attention Layer: The attention layer generates a query-aware representation of the context is the
length of the context) by computing both context-to-query and query-to-context attention and blend-
ing these with the context outputs of the contextual embedding layer. The vanilla version of bi-
directional attention flow is used, both to compute attention and for blending to produce output
G € R84%Le where d = 200 is the size of the bidirectional-LSTM hidden states and L. = 400 is
the length of the context.

Modeling Layer: Similarly to the contextual embedding layer, the modeling layer incorporates
interactions between different words through a bidirectional-LSTM with 200-dimensional hidden

states. However, the modeling layer acts only upon the query-aware context representation, rather
than each of the context and query independently.

The output of the modeling layer M € R2?@*L< and with each columns representing one word, is
fed into model-specific layers discussed in the next section.

3.2 Three Model Families
3.2.1 Simple BiDAF

The first model family is based on the BiDAF network presented by Bi-Directional Attention Flow
for Machine Comprehension [4], which includes a second modeling output M? computed by passing
the common modeling layer M through another bidirectional-LSTM. The distributions of the start
and end positions are computed as

Dstart = softmax(wz;m[G , Mitart])

Pend = softmax(wT (G, Mend))

end

where W € R'°? and weng € R0 are trainable weight vectors. The three variants of this model
family involved training models with M, = M and M.,q = M? (as described in the paper), with
Mgare = Meng = M?, and with My = Mena = M (without computing M ?).

3.2.2 Mnemonic Reader

The second model family is based on network used in Reinforced Mnemonic Reader for Machine
Comprehension [2], an iterative reasoning model. We included both the iterative aligner and the
memory-based answer pointer in our variant, which are the core iterative components of the model.

Iterative Aligner: The iterative aligner takes
the output of the common modeling layer and
applies an interactive alignment step, self align-
ment step, and an aggregation step over 7' it-
erations. At iteration ¢, the interactive aligner
computes a coattention matrix B! defined as Ansr Poier L
ij = gl'c; where ¢; and c; are the current
representations of the 7’th query word and j’th
context word, respectively. The attention out-
put for c; is then computed as

SFU

4
4

SFU

\ 4

Aggregator

Self Aligner

)
olo|o|o
olo|o|o

[a1, 42, -, q,) - softmax(Bj)

Iterative Aligner x T

and incorporated back into the context word
representations through a Semantic Fusion Unit
(SFU), introduced by the paper. The self align-
ment step is structured similarly to the interac-
tive step but with a coattention matrix defined

as ij = cT'¢; and an attention output e & o @ %

o|lo|o|o
o|o

m/oooo
13
[

t
lev €2, 01, SOftmaX(Bj) Figure 2: Mnemonic Reader-Specific Layer

to capture interactions between context words

rather than context and query words. Finally, the aggregation step passes the context representation
through a bidirectional-LSTM.

Over multiple iterations, the iterative aligner allows the model to capture interactions between the
context and the query, interactions between different and potentially distant context words, and
temporal interactions between query and self aware context words. We used two iterations of the
aligner. We differentiated our mnemonic reader from that described in the paper by preceding in-
teractive alignment with the common BiDAF layer, which allows the first iteration of the aligner to
operate on a query-aware context and improved performance over our original implementation.

Memory-Based Answer Pointer: The iterative aligner is followed by the memory-based answer
pointer, which iteratively determines the start and end position probability distributions by alter-
nating between the two. It conditions the start and end distributions on each other by maintaining
memory initialized to the final query-state. The start distribution of the [’the step of L total steps
with memory z! is determined as

st = FN([e1y - cr.), 28, [e1, -y cr,] 0 2L)

pétarl = SOftmaX(wi Sl)

where F'N represents some feedforward neural network, and w! trainable weights. An evidence
vector ul = [c1,...,cr,] - Plax 1S than used to fed into an SFU along with 2. to produce the next
memory state 2.. 2! is then used to determine p. 4 analogously to 2. and p!,, and if | < L is also
used to determine the start memory state for the next iteration z*1. The start and end distributions
of the final iteration are those outputted by the model.

The three variants of the mnemonic reader model family were models with zero, one, and two hidden
layers within F'N used to determine the start and end distributions.

3.2.3 ReasoNet

The third and final model family is based on ReasoNet: Learning to Stop Reading in Machine
Comprehension [5], another iterative reasoning model.

Using the common modeling layer
M as input, ReasoNet makes predic-
tions by storing an internal state s; start, End
initialized to the final query-state like
mnemonic reader and on each itera-
tion ¢ applying a termination gate to
determine whether to continue itera-
tion. If so, the an attention output /
*—{ Attention

Termination

Termination

x¢ is computed based on the interac-
tion between s; and M, which is then
used to determine the next state S;41.
Otherwise, or if the maximum num-
ber of steps T« is reached, the start
and end distributions are predicted by
answer module. Specific implemen-
tation details are as follows. Figure 3: ReasoNet-Specific Layer

’——{ Attention

Modeling Layer

Termination Module: The termination decision is sampled from fig(s¢) = o(Wigs: + by) where
Wie and by, are trainable parameters.

Attention Module: The attention vector x; between s; and M, is computed as =y = M -
softmax (y[cos(W1 M;, Was),i € {1,...,L.}]), where W; and W3 are trainable and v = 10 as
presented by the paper.

Internal State Controller: A bidirectional-LSTM with s; as its hidden state and z; as its input
updates the internal state to s 1.

Answer Module: The final answer is determined by applying a densely connected layer and softmax
layer for each of start and end to [M, M o s;], a blended representation of the internal state and
memory found to work well. The softmax layer produces the desired distributions pgar and Peng-

Our first implementation of the ReasoNet model is the vanilla version presented in the paper. Our
second implementation was a variant which modified the answer module to pass the blended rep-
resentation through a bidirectional-LSTM before applying the dense and softmax layers. The final
variant included both a bidirectional-LSTM pass and a fully connected layer bfore the dense and
softmax layers. The purpose of these additional layers was to further incorporate interactions be-
tween the final internal state and different parts of the context, and improved performance over our
implementation of the vanilla version.

3.3 Ensemble

Each of the nine models generates probability distributions for the start and end positions of the
answer. We ensemble these predictions to produce the final distributions by computing their average.
More specifically, letting psiar, € R€ and Dend; € R€ be the start and end distributions of model i,
fori =1,..., N where N =9 is the number of models, the ensembled probability distributions are

N N

Dstart = E Wstart; Pstart; Pend = E Wend; Pend;
=1 =1

where the sum and weight multiplication are computed element-wise, and where Wt € RY and
Wena € RN are weights. In practice, we have found equal weighting for all nine models with
Wytart; = Wend; = 1/N, likely because our nine single models perform comparably. However, we
have not formally optimized these weights, which we believe could yield even better results.

3.4 Smart Span Selection

Even though our two iterative reasoning model families condition the probability distributions for
the start and end positions on each other, since the ensemble averages distributions from different
models relationships between these two distributions are not necessarily maintained. As such we
decided to condition the end distribution of the final ensemble on the start distribution by selecting
start index s and end index e which maximize the product psarc, Pend, Subject to the constraint that
s and e belong to the same sentence. We chose to apply this constraint because the large majority
of answers are contained by a single sentence and this constraint prevents long incorrect answers
resulting from choosing s and e independently.

Applying smart span selection to our final ensemble model resulted in an F} increase of 1.26% and
an EM increase of 0.95% on the validation set.

4 Experiments

4.1 Dataset

SQuAD[3] is a question-answer dataset over Wikipedia articles with over 100,000 questions. Of
particular note is that the answer is in substring of the context. Multiple human answers are given,
and the score is added if the model matches any. Two metrics are used to evaluate models on this
dataset: Exact Match (EM) and a more relaxed metric F1, which measures precision and recall.

4.2 Model Details

The nine models were trained with Tensorflow’s Adam Optimizer with learning rate 0.001, batch
size of 32, between 20,000 and 30,000 epochs. A maximum question length of 30 words, a max-
imum context length of 400 words, and a maximum word length of 20 characters were used, with
larger inputs being truncated. A 200-dimensional hidden state was used for all LSTMs. For reg-
ularization, dropout was applied to each LSTM, to any fully connected layers, and between CNN
layers for the character-level word embeddings. For our implementation of the Mnemonic Reader
and ReasoNet, we used the iteration parameters cited: 7" = 2 for iterative alignment, L = 2 for the
memory-based answer pointer, and Ti,,x = 10 for the ReasoNet state controller.

5 Results and Analysis

Our best single model ReasoNet scores an F1 of 76.4 and an EM of 66.7 on the validation set, while
our full ensemble of 3 models from each model family achieves an F1 of 79.5 and an EM of 70.0.
Our results relative to other high-performing models can be seen in Table 1.

'Due to issues with CodaLab submissions, these numbers were generated on the validation set.

Table 1: Model Performance on validation/test set vs references

F1 EM
CS224N Baseline 442 35.1
Logistic Regression Baseline 51.0 404
Our ReasoNet (Single)' 764 66.7
BiDAF (Single) 775 68.4
ReasoNet (Single) 79.4 70.6
Our Full Ensemble' 79.5 70.0
BiDAF (Ensemble) 81.1 733
Reinforced Mnemonic (Single) 81.8 73.2
ReasoNet (Ensemble) 82.5 75.0

Reinforced Mnemonic (Ensemble) 84.9 77.7

Table 2: Ensemble Ablations on validation set (all our own implementations)

F1 EM
Mnemonic Reader (Single) 75.9 65.1
BiDAF (Single) 76.0 65.5
ReasoNet (Single) 76.4 66.7
Mnemonic Reader (Ensemble) 77.9 68.0
3x BiDAF (Ensemble) 78.2 68.4
3x ReasoNet (Ensemble) 78.8 69.4

1x BiDAF/Mnemonic/ReasoNet (Ensemble) 78.8 69.5
3x BiDAF/Mnemonic/ReasoNet (Ensemble) 79.5 70.0

5.1 Ablations

Listed in Table 2 is the performance of different combinations of single models and ensembles.
The ensemble performances of a single model family reflect their single model relatives, with F1
increasing by around 2% for each family. Additionally, the 1x B/M/R ensemble that takes in only one
model from each model family is able to perform at or above the level of the best-performing single
model family ensemble, namely 3x ReasoNets, which consists of a combination of 3 ReasoNets.

10 10
o8 o8
06 06
0s 08
02 02
& s

& o

&

§ . 00 ¥ " 00

H
3 5

Figure 4: Select start (left) and end (right) probability distributions for a sample where ensemble
is able to correctly predict the answer, while each individual model is not. Second row from the
bottom is the ensemble, and the bottom-most is the ground-truth.

5.2 Ensemble Sample

To analyze how the ensemble chooses its final answer, we visualize the probability distributions of
each model for a given (context, question) pair in Figure 4. This particular sample was chosen since

each single model was unable to answer the question exactly, but combined, the ensemble was able
to choose the correct start and end span. From the figure, we can see that several of the probability
distributions have selected incorrect answer spans with relatively high confidence. Of particular
note is the 4th single model, which appears to locked in on an incorrect answer with a confidence of
above 0.5 for both start and end. However, by averaging all the distributions, we are able to ignore
this outlier (and many others), and choose the correct answer.

Figure 5: F1 performance of best single models and best ensemble over different question types.
(Question types are selected based on which word appears first in the sentence.)

5.3 Question Types

The model’s F1 performance, as well as the F1 performance of the best single model of each family,
on each question type is visualized in Figure 5. We see that models tend to have the same relative
performance on each question type, performing best on "When” and worst on "Why”. This is likely
because answers to "When” are have very clear boundaries and almost definitely are related to
time (e.g. ”Sunday”, “week”, etc.). However, "Why” questions likely have no such guarantees, as
understanding when to stop can be difficult, and answer lengths for "Why” are likely much longer
than answer lengths for "When”. We also see that ensembling seems to give diminishing returns
as single models get better, unable to help much with the "When” questions, but improving other
question types like Other and "Who” significantly.

5.4 Error Analysis

We analyze error by examining specific samples where the model fails to choose the exact answer on
the validation set. We find two main errors with the model: syntactic complications and imprecise
boundaries.

5.4.1 Imprecise Boundaries

Most of the errors seemed to come from imprecise boundaries, namely the model would include or
exclude several words from either end. Either improving the model or adding more features to our
span selection may help with this.

e Context: In 1542, Luther read a Latin translation of the Qur’an. ... He opposed banning
the publication of the Qur’an, wanting it exposed to scrutiny.

e Question: What purpose would Luther have in not wanting to ban the Qur’an?
e Answers: [‘exposed to scrutiny.’, ‘wanting it exposed to scrutiny.’, ‘exposed to scrutiny’]

e Prediction: ’scrutiny’

5.4.2 Syntactic Complication

Another major errors was that of syntactic complications. Namely, in much of the time, similar
words in a span of the context and the question increase the likelihood of the answer lying within
that span. However, there may be other sentences that have similar words that do not actually include
the answer.

e Context: On the next play, Miller stripped the ball away from Newton, and after several
players dove for it, ... Then Anderson scored on a 2-yard touchdown run and Manning
completed a pass to Bennie Fowler for a 2-point conversion ...

e Question: What player punched the ball in from the 2?
e Answers: [‘Anderson’, ‘Anderson’, ‘Anderson’]
e Prediction: "Miller’

In this case, ‘punched the ball in from’ is very similar to ‘stripped the ball away from’, which is
likely why ‘Miller’ gets picked, and not ‘Anderson’. It is likely pretty difficult to address these
errors, as they run against much of the training set and could be considered adversarial examples.

6 Conclusion

In this paper, we implement three variants on three different types of question-answer models:
Bi-Directional Attention Flow, Mnemonic Reader, and ReasoNet. We then ensemble all 9 different
models to achieve competitive results in the Stanford Question Answering Dataset (SQuAD).
Ablation tests on the ensemble suggest that combining more diverse models that may not be as
high-performing can perform at or above high-performing but similar models. Further work can
involve experimenting with different techniques to ensemble like max vote or a neural network, or
attempting to make the model resistant to adversarial attacks.

Acknowledgements

We would like to thank Richard Socher and the CS224N TAs for their helpful comments on improv-
ing models, as well as a fascinating default project topic. We would also like to thank Microsoft for
providing Azure resources.

References

[1] L. K. Hansen and P. Salamon. “Neural Network Ensembles”. In: IEEE Trans. Pattern Anal.
Mach. Intell. 12.10 (Oct. 1990), pp. 993-1001. 1SSN: 0162-8828. DOI: 10 . 1109/ 34 .
58871.URL: http://dx.doi.org/10.1109/34.58871.

[2] Minghao Hu, Yuxing Peng, and Xipeng Qiu. “Mnemonic Reader for Machine Comprehen-
sion”. In: CoRR abs/1705.02798 (2017). arXiv: 1705 . 02798. URL: http://arxiv.
org/abs/1705.02798.

[3] Pranav Rajpurkar et al. “SQuAD: 100, 000+ Questions for Machine Comprehension of Text”.
In: CoRR abs/1606.05250 (2016). arXiv: 1606 . 05250. URL: http://arxiv . org/
abs/1606.05250.

[4] Min Joon Seo et al. “Bidirectional Attention Flow for Machine Comprehension”. In: CoRR
abs/1611.01603 (2016). arXiv: 1611.01603. URL: http://arxiv.org/abs/1611.
01603.

[5S] Yelong Shen et al. “ReasoNet: Learning to Stop Reading in Machine Comprehension”. In:
CoRR abs/1609.05284 (2016). arXiv: 1609 .05284. URL: http://arxiv.org/abs/
1609.05284.

