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Abstract

With the increasing amount of world’s information stored in relational database
systems, it is imperative to have intelligent interfaces for interaction with the data.
This should be done so as to enable even non expert users of SQL to make efficient
use of the data. Generating executable queries from the question posed by the
user has been a long standing problem, which has been gaining much momentum
lately. Traditional methods involve using sequence to sequence models but the
generalized nature of such models does not exploit the full structure of a SQL
query. In this paper we explore and implement the existing state of the art model
for generating SQL query from natural language question proposed by Xu et al.
(2017) , for the SELECT column and aggregate operator parts of the SQL query.
We observe that our approach and implementation improves the model’s accuracy
by 1.5% for the aggregate operation and ~2.5% for the SELECT column part of
the query, and presents the new state of the art models for each of these.

1 Introduction

Parsing natural language questions into SQL can be viewed as a special form of machine translation.
Machine translation is known as one of the fundamental problems in machine learning, attracting
extensive research efforts in the last few decades (Waibel et al. (1992); Koncar and Guthrie (1997);
Castano et al. (1997)). Traditional machine translation is used to translate text from one language
to another. In this age of digitization, relational databases are used in almost every industry to store
information and records. While they provide a powerful way to store information, extracting these
records requires skill and knowledge of query languages like SQL that retrieve information from
databases. Generating SQL queries from natural language has wide applications, and is something
that has been researched upon both in academia (Yaghmazadeh et al. (2017)) as well as in the
industry (Zhong et al. (2017)). This project tries to explore and implement the techniques introduced
by Zhong et al. (2017), solving the problem of retrieving information, so that natural language
questions can be used to fetch the required data.

Our approach, described in detail in section 4, involves training a deep neural network that trans-
lates natural language questions into their corresponding SQL queries. A SQL query can be broken
down into 3 parts: SELECT, operator (MAX, MIN, COUNT ...) and WHERE. The idea is to avoid
the sequence-to-sequence structure where order does not matter. Thus, the SQL query can be gen-
erated based on a sketch. We train these individual components of a SQL query by using various
deep learning techniques. In particular, we use Long Short-Term Memory networks (Hochreiter and
Schmidhuber (1997)) to encode the input questions and column tokens, and build more deep archi-
tecture on top of the encodings to predict the different parts of the SQL query. We also make use of
a special kind of attention, called column attention while encoding the question tokens such that the
column context is preserved while encoding the input question.



The dataset of choice for this task was WikiSQL, introduced by Zhong et al. (2017). It is, to the
best of our knowledge, the only large scale dataset used for natural language to SQL tasks, which
requires generalization over new table schemas. This is described in detail in section 3. We then
compare our results against the current state of the art on this dataset.

We train the select and aggregate components independently using cross entropy loss obtained by
comparing the actual SQL query, and the predicted query. Training the individual components sep-
arately gives us new state of the art performance on the aggregate and the select part of the query.
We achieve an aggregate accuracy (Accqgq) of 92.5%, and SELECT column accuracy (Accger) of
94.02%.

2 Background/Related Work

Natural language interfaces aims at integrating natural language processing and human-computer
interactions. It seeks to provide means for humans to interact with computers through the use of
natural language. In this paper, we explore a specific aspect of the research which applies to rela-
tional databases which can be essentially summarized as translation of natural language questions
asked by the user to corresponding SQL queries. Neural machine translation (NMT) is an approach
to machine translation that uses an artificial neural network to predict the likelihood of a sequence
of words, typically modeling entire sentences in a single integrated model. Deep learning applica-
tions appeared first in speech recognition in the 1990s. The research on using neural networks for
machine translation started gaining momentum in 2014, when Sutskever et al. (2014) published a
paper on sequence to sequence learning with neural networks. Other work using encoder-decoder
networks include Cho et al. (2014), Bahdanau et al. (2014), Wu et al. (2016). Variants of seq2seq
were used by Vinyals et al. (2015) and Dong and Lapata (2016) to predict next characters in the
sequence.

Major improvements in the area of parsing natural language to SQL has been achieved upon recently
by Zhong et al. (2017), and Xu et al. (2017). Zhong et al. (2017) introduce Seq2SQL, a deep neural
network architecture coupled with policy-based reinforcement learning (RL) for translating natural
language questions to corresponding SQL queries. Seq2SQL is trained using a mixed objective,
combining cross entropy losses and RL rewards from in-the-loop query execution on a database.
Xu et al. (2017) proposed SQLNet, a sketch based architecture to solve this problem. They make
use of the structure of a SQL query, and generate it from a dependency sketch which describes the
dependency between different parts of the SQL query. A neural network is then used to predict each
slot in their sketch. Compared to Zhong et al. (2017), they avoid employing a reinforcement learning
approach to solve the order matters problem in the WHERE part of the query by proposing a new
approach based on column attention.

3 Dataset

We now describe the dataset used in this paper in detail. Zhong et al. (2017) introduced the WikiSQL
database that is used throughout this paper. The the query generation task posed by this dataset is
unique when compared to other NL2SQL datasets in a few ways:

e The queries in WikiSQL span across a huge number of tables and thus require a model
which is not just generalized over the queries, but also over tables with different schema.
e The dataset was generated by crowd sourcing the natural language questions and thus re-

quires a model which more than just overfits the questions generated using a template.

As shown in figure 1, each example of the dataset, which is the input to the model, consists of two
parts:

e natural language question for which the query is to be synthesized

e schema of the corresponding table

Schema of the table consists of both the names of the columns and the type of the data contained
in the columns (i.e. numbers v/s string). We also used the resplit dataset, as presented by Xu et al.



Question

Nomination Actors name Film name Director Country
Which actors are from Ukraine?
Best Actor in a Yuriy Dubrovin Okraina Pyotr Lutsik Ukraine
Leading Role Query
Best Actress in a Galina Totalitarian Vyacheslav Russia A
Leading Role Bokashevskaya Romance Sorokin SELECT actors name WHERE country EQL ukraine

Figure 1: An example from the dataset depicting the table, question and the corresponding SQL
query

(2017), which is different from the original dataset as presented in SQLNet. In the resplit dataset,
tables are not shared between the train, validation and test set which helps furthermore in building a
more generalized model. The label for each example is the SQL query to be synthesized, represented
as an index of one of the operators (NONE, MAX, MIN, COUNT, SUM, AVG) and the column
selected, which is the index of one of the table columns. It is worth noting that we do not need to
generate the SQL grammar (keywords like SELECT, FROM, AND ...) and the table-id (for the
FROM part) since input question is already assumed to be corresponding to one table only, given as
a part of the input.

4 Model

The task explored in this paper is based on the WikiSQL dataset. The problem tackled is the gen-
eration of SQL query from the natural language question. Keeping in mind the privacy concern
around the actual data contained in the database, the model needs to be agnostic to the contents of
the database, since the data might not be available while generating the query from the user supplied
question. Thus, the model must be able to construct the SQL query based solely on the table schema
and the natural language question. This not only evades the privacy concerns but also makes the
model more generic, enough to work with any table and data.

We now present our approach which is based on that proposed in SQLNet but differs in a few aspects
which enables us to achieve the new state of the art results. Most of the existing models employed
for the task of generation of SQL query from the natural language disregard the inherent structure
in the SQL query as depicted in figure 1. The main idea is to separate the SQL grammar (SELECT,
FROM, COUNT ...) from the question specific slots that need to be combined with the grammar to
form the full SQL query.
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Figure 2: Broad overview of the architecture of the model

Figure 2 demonstrates the inputs that are required for prediction of operation and column of the
table to which the question pertains. We now describe in detail the approach for the prediction of
the operation and the SELECT column from the table headers and the input question.



4.1 Aggregate operation

It is worth mentioning that the set of aggregate operators that are present in the WikiSQL database
is: {NONE, MAX, MIN, COUNT, SUM, AVG}.

From the figure 2, it can be seen that the aggregate operation depends only on the question. This can
be intuitively seen from an example. Consider the question:

“How many total runners had jockeys of Olivier Peslier with placings under 27”.

The correct operator in the SQL query for this question is SUM since the question asks for "How
many”.

Let Eqg denote the encoding of the question. For generation of this encoding we employ a

bidirectional RNN with LSTM cells running on top of question tokens (3:?,1:? » m]\%) where

M is the total number of question tokens. We use the final state output of the RNN as Fq. It is
worth noting that the LSTM cells in the forward and backward network of the RNN do not share
parameters. We calculate the prediction over all aggregate operators as:

P,ge = softmax (W39 tanh(W"9 Eq + b199) + b597) (1)

where Fq is of dimension d, which is the output size of the RNN encoder, and we use a multi
layered perception over E to generate the final predictions over aggregate operators. Dimensions
of W1 is d x d, by and by is d each and that of W5 is 6 x d. Finally we take the max of softmax
normalized predictions P,ge Over 6 operators to get the predicted index of the operator. We use the
index of operator thus found to calculate the loss Lossagg

Notably, our approach is different from that used in SQLNet(Xu et al. (2017)), and outperforms
it. The latter proposes the use of predicted SELECT column, described in section 4.2, for the
prediction of aggregate operator. We propose the using of only the question for two reasons. First,
the aggregate operation should be infer-able from the question alone since the question contains
enough information required for the prediction of the aggregate operation. Second, this avoids
forced mis-predictions due to mis-predicted SELECT column. A wrongly predicted column might
force the model to wrongly predict the operation.

4.2 SELECT Column

Before we proceed with the methodology used to predict the column from the table for the SELECT
part of the query, we would like to introduce the concept of column attention.

Column attention

Let Eg denote the encoding of the question (same as before), E., denote the column encodings
such that E.,;, is the encoding of col; of the given table. Here each col; is composed of multiple
words (25", 25°% ...). We employ the same approach to encode each column name as used to
encode the question tokens. Dimension of E.,; is C' X d where C is the total number of columns

across all tables in a batch.

Use of Eg poses the problem that while encoding the question to generate E, the encoder may not
remember particular information useful for predicting the column. For example, consider the ques-
tion "How many countries got 796.7 points?”. It has token points” which is relevant to predicting
column “Points” from the list of columns in the table (["Rank”, ”Member Association”, ”’Points”,
”Group stage”, “Play-off”, ”AFC Cup’])

To capture this information, we introduce the concept of column attention which enables us to use
Eq|cor instead of Eg which incorporates the intuition described above.

Let Hg denote a M x d matrix of all hidden state outputs for the question with length M. Let E,,
denote a C' x d matrix containing encoding of the columns in the given table with C' such columns.
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Figure 3: Column attention mechanism for computing the encoding of the question by applying
attention w.r.t. to a given column

For a given column col, with encoding E,,;,, we define attention weight «, a vector of dimension
M as:

a = softmax(HoW E.;,) 2)
where W is a trainable matrix of dimension d X d.

Having computed the attention weights a, we can calculate Eg|.; as the weighted sum of each
question token’s hidden state output based on a:

EQ|coli = aHQ (3)

From this point onward, we can generalize and replace the use of Fg with Fg)..; in our calculations
to predict the SELECT column.

Column prediction

Prediction of the column for the SELECT is similar to the process followed for prediction of the ag-
gregate operator. There are notable differences though, that leads to a more complicated architecture
of the model for the prediction of the SELECT column that we will now describe in detail.

As can be seen in figure 2, the prediction of the column from the set of columns of a table is
dependent not just on the question, but also the columns of the table . For example, consider the
question:

”How many significant relationships list Will as a virtue?”

which provides the intuition for the use of table column names as the input for prediction where
the model could learn to predict column “’Significant Relationship” from the set of all columns:
”Approximate Age”, ”Virtues”, “Psycho Social Crisis”, ”’Significant Relationship”, “Existential
Question”, "Examples”.

At this point we can conclude that the prediction of the SELECT column is solvable using a pointer
over the table columns; we select the column that best matches the input question. For this, we first
generate the encoding of the question in the same was as done for the aggregate, as explained in
section 4.1.

We then generate the encoding of the columns of the table associate with the query. We employ
the same architecture of using a bidirectional RNN using LSTM cells to encode the columns of the
table.



We define Ps; as the prediction calculated over the column of the tables for the SELECT part of the
SQL query.
Ly = W Eeo + b5
Ly = W3 Eqjeot + b3 @)
Py = softmax (W5 tanh(L; + Ly) + b5")

Finally we take the max of softmax normalized predictions Pge; over the columns of a table and
find the index of the column for the SELECT part of the query. We use the index of operator thus
found to calculate the loss Lossge1

4.3 Objective Function

While training, we calculate two losses as mentioned above Lossqq44 and Loss.; and make use of
gradient descent to minimize the value of the two loss functions independently. It is notable that
we employ a different objective to that used in similar research as described in SQLNet (Xu et al.
(2017)) and Seq2Sql (Zhong et al. (2017)) in which a mixed objective function is minimized. The
mixed objective function as described in SQLNet is L = L0ssqq9 + L0ssse;. We deduced that
optimizing the mixed objective function is less optimal than optimizing the individual loss functions
and is analyzed in detail in section 5.2.

5 Experimental Results and Analysis

We make use of the tokenized re-split dataset as describe in section 3. We implement both our
models using TensorFlow (Abadi et al. (2015)) from scratch. We run several experiments that we
now describe and analyze in detail.

5.1 Training details
5.1.1 Input tokenization and encoding

We first used the Stanford CoreNLP tokenizer by Manning et al. (2014) to parse the input questions
and table columns and tokenize the sequences. We use GloVe (Pennington et al. (2014)) embeddings
of size 50 for representation of each word in the input tokens before using them with the bidirectional
RNN. It is worth mentioning that the word embeddings thus used are trainable and give a better
performance compared to non trainable embeddings. Any word for which the embeddings are not
found in the pre-trained GloVe embeddings is assigned the embedding corresponding to UNK token
which is initialized with random embedding, and as with other word embeddings, is trainable.

5.1.2 Model parameters

Our model employs 3 bidirectional RNNs using LSTM cells (one used to encode the question in
each aggregate and select column model and another one used in select column model to encode the
table column names). Each LSTM has one layer with 128 units. Each of the single layered neural
networks used on top of the encodings to predict the aggregate operators and column index have
have 2 layers, 128 units in the hidden layer and use tanh non linearity wherever applicable. We use
Adam optimizer with a learning rate of 0.001. All layers have a dropout of 0.1 for input and output.
We train our model in batches of 64 examples for 20 epochs. The model was trained on two Tesla
M60 GPUs.

5.2 Results

Table 1, summarizes the overall results obtained with our approach. We compare our results against
the state of the art research done on this dataset for the aggregate and select part of the SQL query.
We observe that our approach improves the results on each of these and present a new state of the
art. Our accuracy on the aggregation operators is 92.5% which is ~1.5% better than the state of the
art and 94.02% for the select column part which is ~2.5% better than the existing state of the art
results.



Table 1: Summarized results of our experiments compared to that of existing stae of the art

| Model | Accagg | Accser |
Seq2SQL(Zhong et al. (2017)) | 90.0% | 89.6%
SQLNet (Seq2set+CA) 90.1% | 91.1%
SQLNet (Seq2set+CA+WE) 90.1% 91.5%
Ours 92.5% | 94.02%

Using structure of the SQL query

SQL queries can be viewed as composed of 3 parts as shown in Table 2

Table 2: Subparts of a SQL query and the slots to be predicted in those subparts

| Part of query | Slots to predict |
SELECT aggregate operator, select column
FROM table-id

WHERE Triple of the form: (where column - operator - value)

WikiSQL task does not require the prediction of the table-id since every question is asked for a
particular table. In this paper, we only explore the SELECT part of the query where we need to
predict the aggregate operator and the SELECT column for the table.

An alternative to synthesizing the SQL query structurally is to model the problem as a sequence
generation task given the question and column sequence. In this approach, we can use a seq2seq
model to generate the entire SQL query (including the grammar). Seq2seq consists of two RNN’s
called encoder and decoder. We begin by providing the encoder RNN with an input that consists
of the word embeddings of the input question, the column tokens, as well as the SQL tokens. The
hidden state of the encoder feeds into the decoder, which generates a probability distribution over
the whole vocab that is used to predict the next query word. The output of the seq2seq model is also
in the form of natural language combined with special sql tokens, corresponding to the grammar of
the SQL language (ex. symselect — SELECT, symwhere — WHERE ...).

An example from the predictions by our model is (where the words symselect, symagg, symcol etc.
are the special SQL tokens):

symselect symagg symcol no. symwhere symcol player symop = symcond patrick o’bryant

We concluded that the seq2seq model is provably not a good solution for this task. We achieved an
overall accuracy of 30% with a seq2seq model. It performs fairly well on shorter queries, but it fails
to generate larger SQL queries. Part of the reason why seq2seq does not give good results from SQL
generation is because the output in seq2seq consists of the entire vocabulary, whereas we know that
the tokens in SQL query depend only on the input question, the columns, and the SQL tokens only.
Therefore, generation of output over the whole vocab would lead to a lot of sparsity, noise, as well
as is computationally much more expensive to train.

Loss

We extensively trained the models with both the variants of the objective function i.e the mixed loss
function as described in section 4.3 and independent objective function (different loss for aggrega-
tion model and SELECT columns model). As can be seen in figure 4, the model trained by optimiz-
ing the two losses independently outperforms the one which minimizes the mixed loss. We attribute
this behaviour to the fact that when minimizing the mixed loss, Loss,q, decreases, decreasing the
overall loss L whereas Lossse; does not decrease much, however when training both the models
independently, both Loss, g4 and Lossg,; are optimized yielding a better overall accuracy.

Column attention

We evaluate the performance of the model with and without columns attention as described in section
4.2. We observed that adding column attention improves the performance of the SELECT column
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Figure 4: Plots of losses for the two models

model by ~2.5%. This can be attributed to the fact that the model captures the context of the
columns when encoding the question which improves the accuracy of prediction of the columns for
the SELECT part of the query.

6 Conclusion

In this paper, we worked on generating SQL queries from natural language questions. Initially,
we generated SQL queries using a generic seq2seq model as the baseline. We found that while
the accuracy for short queries was fairly reasonable, the model started losing context over large
queries, and started predicting the same keyword. Also, the training took a huge amount of time to
converge, as it generated predictions over the whole vocab. We then exploited the inherent structure
of SQL query to break it into parts, that can be predicted independently. Our model architecture is a
composition of LSTM (used to encode the question and column tokens), followed by multi layered
perception. We evaluated our model by comparing across several aspects involved in the architecture
ex. trainable v/s non trainable word embeddings, various hyper parameters, mixed objective function
v/s independently optimized models, single layered vs multi layered perception.

In this paper, we explored our approach only on the SELECT part of the SQL query and achieved
new state of the art results for these models. We think that this approach will be even more fruitful
when applied to the WHERE part of the query. We hope to explore this in the future.

It is also worth noting that the WikiSQL dataset, although contains a large number of tables and
human generated questions, is limited in the richness of SQL query. The dataset is limited to SE-
LECT ...FROM table-id WHERE .. .kind of queries. This can be expanded to include other SQL
functions, like join.
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