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Abstract

Machine comprehension (MC) and question answering (QA) is the ability of a program to
understand the nuances and concepts in a textual context or passage at a level where questions can
be asked about the context and the program can generate an estimate of where in the context the
answer can be found. The field of natural language processing has achieved recent success in MC
by employing deep neural network-based architectures that incorporate temporal and hierarchical
elements to compute answer predictions. In this paper, a mixture of models incorporating
bidirectional recurrent neural networks (RNN), convolutional neural networks (CNN), and multiple
attention mechanisms were used to attain an F1 score of 66.15% and EM score of 50.83%. The
complex interaction between context, question, and answer is conjectured to be a function of word
semantic similarity, hierarchical word semantic groupings, which might be perceived as ideas, long-
term and short-term temporal relationships, and a filtering or attention mechanism that enables a
model to focus on or ignore words, ideas, and relationships in a given example. This approximation
of the complex interaction allows for an accurate prediction of the answer given a question about
the context.

1 Introduction

Machine comprehension (MC) and question answering (QA) are experiencing dramatic improvements in capability
and accuracy as the natural language processing community has shifted from expertly-constructed, structured feature-
based systems to end-to-end neural network-based models that are trained on large datasets crafted for respective
problems. The SQuAD dataset [ 1] was constructed using crowd-sourcing from human contributors and provides more
complex question and answers than prior Cloze datasets, which enables more complex models to be built to
approximate the inherent relationships. The dataset consists of 100,000 examples split into three sets — training,
development, and test — with each example consisting of context, question, and answer triples.

In this paper, we started from the baseline model and progressively created more complex, larger models. The model
complexity was increased by adding more sophisticated recurrent neural network architectures like Long-Short Term
Memory (LSTM) [2] or Gated Recurrent Units (GRU) [3,4] and then adding stacked versions to create multi-layer
LSTMs and GRUs. Another important variation was adding bidirectional versions of the LSTM [5] and GRU so that



temporal information could pass forward and backward to a timestep. Second, an attempt was made to create idea
vectors from sequences of the word embeddings, which have their inspiration from the success of n-gram models that
are also groupings of words. The core idea behind this approach was that although word embeddings encode semantic
similarity between individual words [6], idea vectors might enable higher-level hierarchical concepts to be modeled
by incorporating a similar metric among a hierarchy of the words. In this way, it may be possible to generate a
knowledge base that could be used as a machine learning component like word embeddings, but for different tasks
that might need a particular knowledge base, for example a financial corpus knowledge base versus a legal corpus
knowledge base. Third, two attention mechanisms [7,8], Bidirectional Attention Flow (BiDAF) [9] and Dynamic
Coattention (DynCoAttn) [10] were implemented to compare the differences and improvements that can be obtained
from different forms of attention. Fourth, after the attention layer, either a secondary attention was applied like Self-
Attention [11] or the blended features were concatenated with the attention features, which were then passed to a
recurrent neural network modeling layer using either LSTM or GRU as the individual RNN units. These final features
were then used to predict the starting and ending span predictions. An ablation study was provided to show the
differences in performance with and without particular components of the architecture. Error analysis was provided
to show the differences in models and where improvements could be made in future model architectures and
experiments.

2 Background and Related Work

Rajpurkar et al. [1] created the Stanford Question Answering Dataset (SQuAD) using crowd-workers to answer
questions on Wikipedia articles. They used a logistic regression model to develop an initial baseline F1 score of
51.0%, while human performance was listed as 86.8%. In Bahdanau et al. [7], they showed that it was possible to
improve upon sequential models by incorporating an auto-aligning mechanism that was referred to as an attention
mechanism. This attention mechanism was crucial to the model implemented in this paper and enabled the model to
focus or respectively ignore features that may or may not have been relevant to a prediction at a particular time step
in a question sequence.

In Seo et al. [9], a hierarchical approach composed of lower level features including character embeddings and word
embeddings were progressively combined with contextual embeddings to form hierarchical features that were then
passed to a unique attention layer. The CNN pipeline in this paper was inspired by this hierarchical feature set. The
bidirectional attention layer was replicated in our model and enables attention to flow from the context to the question
as well as from the question to the context. It is conjectured that this aids in capturing the mutual interactions between
the information content in the question and the context, and the model is then able to replicate this interdependence
succinctly. Finally, and most importantly to performance, the context features are passed along with the attention
blended features to a modeling layer that incorporates another recurrent neural network. This layer will be shown to
be indispensable in the experiment section.

In Xiong et al. [10], another approach was taken toward fusing or blending question and context features using a
unique coattention mechanism. This coattention mechanism was viewed as comparable in model value to the BiDAF
mechanism and was implemented in the model for comparison. In much the same way as BiDAF, the dynamic
coattention (DynCoAttn) mechanism also required a subsequent modeling layer for fusing the context and blended
attention features to produce substantially improved results. Lastly, they improved upon the prediction layer by
implementing a dynamic decoder that iteratively computed improved start and end span predictions.

In Vinyals et al. [12], Pointer-Net was introduced as a means of using the attention mechanism idea as a way of
dynamically picking an output from a variable length input. This approach is a profoundly useful technique and much
time was spent unsuccessfully trying to incorporate this into the prediction layer. Vinyals solved computationally
intractable problems like the traveling salesman with little to no tuning of hyperparameters, and this was most likely
attributable to the exponentially efficient universal approximation properties of deep neural networks [13]. Vinyals’
paper was incredibly compelling in that it cogently suggested that other problem domains could likely be dramatically
improved if a dataset and a neural approach were designed to solve the particular domain problem.

In Wang and Jiang [14], the context and questions are preprocessed in an LSTM layer and then passed to their
MatchLSTM layer. This layer performed an additive attention mechanism and then the blended representation was



concatenated with the original context where it was then passed to a modeling layer. This was repeated in the reverse
direction to produce a bidirectional feature set. Finally, the output of the modeling layer was passed to an adaptation
of the Pointer Net to produce predictions of the start and end span called Answer-Pointer. The more applicable version
of the Answer-Pointer network was the boundary model, which only predicted the start and end indices instead of the
entire sequence of indices from start to end.

In R-Net [11], a novel self-attention mechanism was introduced that helped to focus the attention from the context to
the context as a means of maximizing the relevant features within the context. This was complemented with a gating
mechanism to help the network determine if the features were relevant or irrelevant and might have been interpreted
as a focus gate. Like previous models, the blended representations were then passed into a modeling layer, which was
a bidirectional RNN. Like Wang and Jiang 2016, they chose to use a pointer network adaptation to help predict the
start and end span predictions.

After taking inspiration from Quasi-Recurrent Neural Networks [15], which combines aspects of both convolutional
neural networks and recurrent neural networks, a convolutional neural network pipeline was setup in parallel with the
recurrent neural network pipeline. The CNN pipeline borrows inspiration from [16,17], where CNNs were used to
model sentences. The underlying goal was to build idea vectors from the context and question separately, which
would be hierarchical combinations of word embeddings from the question and from the context in order to efficiently
capture the core ideas in a question or context.

Finally, although Memory Networks [18] expand neural architectures with computer architecture concepts and are
promising in terms of merging the memorizing potential of modern computers with neural approaches, the approach
was not implemented in this model. Similarly, although Adversarial Squad [19] brought the adversarial example
approach to improving model robustness, adversarial example data augmentation was not used in this model to
improve robustness though it seemed reasonable that if combined with a gating mechanism, these examples could
help the model learn to ignore features better.

3 Approach

3.1 Problem Definition

The general question and answering problem is formulated as follows. There are 100,000 example tuples, where each
tuple is composed of a question, the context, and an answer to the question from the context. The answer is specified
by a start span and an end span, whereby the words between the start and end span are the answer to the question. For
each example, each question, context, answer tuple (g, c¥, a*) is composed of words, w;. A question is defined as
q* = {wI= where a question is viewed as a sequence of M words. A context is defined as c* = {w,}[=Y where a
context is viewed as a sequence of N words. An answer is defined as an index or span representing the starting and
ending position in the context of the answer or a* = [s¥, f¥]. The overall objective is to develop a question-answering
system that uses the 100,000 examples to approximate the underlying function f(g¥,c*) = a*. A deep neural
network-based architecture composed of stacked recurrent network blocks, convolutional network blocks, and
multiple attention mechanisms was developed as an approximation to this function. From [13], neural networks are
universal, exponentially-efficient approximators, which enables accurate approximations to be developed given
sufficient regularization, computational power, and dataset size.

3.2 Model

In approximating the function f, which represents the complex interactions between the question, the context, and the
answer, it was assumed that the model would do this by systematically decomposing the interactions into the following
three qualitative categories. First, the question and context were interpreted as a temporal word sequence, whereby
information at multiple timesteps forward and backward from the current timestep were viewed as being relevant to
the processing and understanding of the information content at the current timestep. Second, the words in the question
and context alone provided information based on their word embeddings, but it was conjectured that word groups



could provide equally relevant information when amalgamated hierarchically among their adjacent neighbors in a
sequence. This could be represented as a hierarchy whereby groups of words can be composed into ideas or higher-
level concepts. Lastly, given dense information in the context and question, it was not sufficient to just have
representative features of the question or context. The similarity and relevance between the features had to be
identified so as to maximize what was relevant to a particular question or context. In short, a mechanism to focus on
a particular set of ideas and concepts was needed to filter what was relevant and this was accomplished using an
attention mechanism. From an adversarial standpoint, what was needed was not just an attention mechanism, but also
a mechanism for ignoring what was not relevant. Since there are multiple ways of accomplishing the three categories,
the architecture was broken down into the sub-architectures as shown in Figure 1.
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Figure 1. High-level modular architecture used to compute the approximation function f. Red-boxed portions did not
train well, were intractable computational bottlenecks, or produced very sub-par predictions when trained on small
batch sizes.

This modular architecture enabled different model components to be swapped in to test whether one component was
better than another. The modular variations that were possible included:

Temporal Interaction Modeling Layer: Basic Bidirectional RNN-GRU Encoder, Bidirectional RNN-GRU Encoder
with N-Layers, Bidirectional RNN-LSTM Encoder with N-Layers.

Hierarchical Interaction Modeling Layer: 1-D Convolutional Neural Network of filter width f and layer depth d
with k filters followed by max-pooling. Variation was primarily changed in the number of layers of the 1-D CNN,
maxpooling sequence. The CNN layers were augmented with highway networks to enable increased depth, while
minimizing training difficulty [20,21].

Temporal and Hierarchical Interaction Attention Layer: Basic Attention, Bidirectional Attention Flow, Dynamic
Coattention

Second Level Attention: Self-Attention
Blended Representation Layer: Affine Relu Layer, Affine Maxout Layer [22]
Output or Prediction Layer: Softmax prediction

All blended features generated were then combined in the blended representation layer before being passed to the
output or prediction layer. Although character embeddings and subword embeddings [23] can be used to improve the
out of vocabulary (OOV) problem for the GloVe word embeddings, they were not used in this model. Part of speech



(POS) and named-entity recognition (NER) features were not used because they were shown to be ineffective at
increasing performance in [14].

3.3 Temporal Approach RNN Equations

The following equations describe the best model that was trained during the experiments. This was the fully
implemented bidirectional attention flow model.

q* = w =Y, c* = {w)izY €Y

h} = StackedBiDirGRU (g, 3 layers), h¢ = StackedBiDirGRU (c¥, 3 layers) )
C2Qy, h§ o C2Qy, h§ ° Q2C, = BidirectionalAttentionFlow (h{, h{) 3)

G = [hi, C2Q4, hi ° C2Qy, hi; » Q2C] 4)

M?* = StackedBidirectionalGRU (G, 2 layers) (5)

M? = StackedBidirectionalGRU (M*, 1 layer) 6)

zg =w'[G;M],  p° = softmax(z) @)

Ze =we'[G;M],  p® = softmax(z,) ®)

4 Experiments

4.1 Implementation and Dataset

The SQuAD training dataset has the summary statistics shown in Figure 2. Based on the given statistics, limiting the
answer span difference between start and end to 15 could have increased accuracy. The context was length was chosen
to be 600, but it may have been possible to get similar or better accuracy using 300 due to computational limitations.
The question length was set to 30.
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Figure 2. SQUAD training set summary statistics.

The experiments were performed using Tensorflow [24] and cuDNN [25] on Azure virtual machines ranging in
hardware from one Nvidia Tesla M60 graphical processing units (GPU) to four Nvidia Tesla M60 GPUs per machine.

Models were trained using batch stochastic gradient descent with the Adam optimization algorithm [26] or the
Adadelta optimization algorithm [27]. More complex models were trained with smaller batches to prevent out-of-
memory (OOM) errors. The learning rate for Adadelta was set to 1.0 and was largely insensitive to learning rate
changes. The learning rate for Adam was tuned using a hyperparameter search coupled with a random search as
recommended in [28] then followed by a more focused grid search. The hyperparameter values for learning rate were
calculated using a uniform random variable over the exponent and then raised to the power of ten. All recurrent
networks had dropout applied to improve generalization from the training set to the development set [29,30]. The



dropout regularization parameter was randomly generated using uniform random generation between 0.2 and 0.3. The
hyperparameter tuning is shown in Table 1 below with observations during training. Batch size and hidden units were
set to 50 and 100 respectively.

Table 1. Hyperparameter search observations.

Model # | Learning Rate | Dropout Observations

1 0.5000 0.2242 Loss explodes shortly after starting
2 3.2397e-2 0.2518 Loss grows, then trains slowly

3 3.4256e-4 0.2211 Trains well, fast

4 9.6060e-5 0.2388 Trains well, fast

5 1.1301e-5 0.2041 Trains well, slower than (4)

6 5.7779¢-3 0.2328 Trains well

Training was stopped when fast learning was encounter and then the next hyperparameters were tested. If the training
loss started to monotonically grow, training was immediately stopped. Hidden units were not changed based on
training comments in [14], which stated that when more hidden units were added the improvements were small.
Following the random search, a grid search was performed over the learning rate and dropout in the more limited
range shown in Table 2.

Table 2. Grid search over learning rate for Adam algorithm.

| Learning Rate | 2.1097e-4 | 4.3763¢-4 | 9.6060e-5 | 3.3519¢-4 | 8.7968¢-5 |

4.2 Results

The results are calculated based on two metrics, F1 and EM. F1 measures the overlap between the predicted words
and the answer words. EM or exact match calculates if it is an exact string match with the answer. EM is a stricter
measure. The results are shown in Table 3 and the training results are shown in Figure 4.

Table 3. Experiment results with ablation of BIDAF model.

Model Train F1 Train EM Dev F1 Dev EM
Baseline 0.5641 0.4419 0.3965 0.2895
BiDAF (basic) 0.6494 0.5370 0.4210 0.3059
BiDAF (full) 0.7656 0.6220 0.6475 0.4988
BiDAF (full, ens2) | 0.7922 0.6570 0.6615 0.5083
DynCoAttn (full) 0.7614 0.6330 0.6327 0.4819
dev/EM dev/F1
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Figure 4. Basic baseline model in orange, bidaf model without modeling layer in blue, bidaf model with modeling
layer in gray.

All RNN models produced the first encoder representations using three-layer deep LSTM or GRUs. The difference
between LSTM and GRU units was negligible and GRUs were selected for reduced computational complexity in



subsequent models. The BiDAF basic model only implemented the bidirectional attention mechanism without a
modeling layer. This improved the F1 accuracy roughly 3% over the dot product attention mechanism. By adding
the modeling layer and adding another GRU RNN to the prediction layer, the F1 accuracy increased nearly 26% over
the baseline model. In both the DynCoAttn model and the BiDAF model, adding the modeling layer dramatically
improved the F1 and EM results. Consistently, the BIDAF implementation outperformed the DynCoAttn modelas
shown in Figure 5, although the dynamic pointer decoder was not implemented from the full dynamic coattention
network.
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Figure 5. Bidaf model (full) orange, bidaf model (full, ens2) gray, dyncoattn model (full) blue.

The CNN models proved difficult to train and when trained produced sub-par results. This was disappointing because
CNN s are efficiently implemented for GPUs and the hierarchical approach seemed reasonable. It was possible the
CNN architecture could have been simplified to use simpler residual networks [31], instead of more complex highway
networks, but ultimately this hierarchical approach requires further investigation.

The BiDAF and DynCoAttn models were augmented with a self-attention context feature, but this proved
computationally costly and both augmented models could not be trained effectively.

4.3 Error Analysis

The best trained BIDAF model did well on when, what, and where questions. These particular examples had shorter
answers, and that may have been the underlying factor in success. Successful examples are shown in Table 4. Longer
what and how questions had much less successful predictions as shown in Table 5.

Table 4. Examples where the model did well.

Question True Answer Predicted Answer
when was the prime number at the end of the 19" century end of the 19t century
theorem proven?

what did tesla incorrectly believe x-rays were longitudinal waves longitudinal waves
about x-rays?

what legitimate dynasty came after | ming ming

the yuan

where did tesla go upon leaving prague prague

gospic?

what did the greek root pharmakos | sorcery or even poison sorcery or even poison
imply?




Table 5. Examples where the model did poorly.

Question True Answer Predicted Answer

what is the function of the tardis? time machine firmly linked to the show in the
public’s consciousness

how big was the vertical assembly 130 million cubic feet vab

building?

5 Conclusion

Improving upon state of the art is difficult in machine comprehension, but with systematic decomposition, iterative
improvements, and model diagnostics it seems eminently possible. The modeling layer and in particular applying an
RNN model after computing blended representations proved to be invaluable for improving the accuracy of a model.
Computational limitations can force early down-selections of model approaches, but it seems that more computational
power can actually enable more expressive models to be built and tested. Learning rate annealing with ADAM at the
very end enabled a small 1-2% boost using manual changes. Regularization was necessary to generalize well from
the training set to the development set, but the tradeoff was that regularization made the model more difficult to train.
These computational bottlenecks definitely encouraged learning new approaches to training a portion of the
computational graph on multiple GPUs. When implementing models from research papers, although the high-level
details are given, there was definitely a realization that the low-level training details or implementation nuances are
crucially important even though they may be omitted or glossed over.

With computational bottlenecks, a desired future research direction is developing an information-theoretic metric for
sorting examples in a batch. The impetus for this is to maximize the amount of information propagated through the
network during training per batch, and it seems plausible that not all examples are equal in information content. Lastly,
although the hierarchical convolutional neural network pipeline was largely a failure, the hierarchical notion of word
embeddings as idea vectors still seems worth pursuing. While word embeddings are now almost a default element of
deep neural network models for natural language processing problems, it would be a worthwhile pursuit to determine
if idea vectors can be precomputed in a similar fashion as the next step up the conceptual chain.
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