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Abstract

Over the recent years, there have been several publications of deep learning mod-
els which integrate attention mechanisms that successfully extend to Machine
Comprehension (MC). In order to understand how these architectures can im-
prove rudimentary implementations, our task is to upgrade a baseline model by
augmenting some of these recently introduced components to drastically increase
prediction accuracy. On the Stanford Question Answering Dataset (SQuAD), our
upgraded model improves the baseline F1 score from 43.93% to a new F1 test
score of 71.68%.

1 Introduction

MC and Question Answering (QA) are both crucial tasks in natural language processing that require
natural language understanding and world knowledge, as well as large-scale datasets to train learning
models to accurately comprehend and predict correct answers from any given question. We explore
various techniques to improve an existing model by implementing components from other successful
recent models published, as well as tune the various hyperparameters in accordance to the changes
made and feedback from the output results. One of the key components that adds the greatest
improvement from the original baseline is implementing the Coattention Encoder layer originally
introduced in the Dynamic Coattention Network (DCN) model (Xiong et al., 2017), as well as the
Pointer Sentinel Mixture Model (Merity et al., 2016) to concatenate trainable sentinel vectors to
the question and context word sequences. Both components and their integration into the existing
project are described in detail in Section 3: Architecture and Approach.

2 Related Work

The model which our improvements are built upon are from the CS224N Winter 2018 SQuAD final
project on GitHub'. The improvements are mainly based from the Coattention Encoder architecture
introduced from the DCN model, which replaces the existing basic attention layer. The contextual
embedding layers for the question and document that have been included in the base project are
based on a simplified version of the Bidirectional Attention Flow (Seo et al., 2017) architecture,
with the exclusion of the character CNN embeddings (Kim et al., 2016), and the substitution of the
main attention layer with a basic attention layer. The recently released Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016), provides over 100,000 question/document pairs and an-
swers, allowing for a variety of qualities that culminate in a natural QA task. The performance based
on the SQuAD dataset of the comprehension system is then uploaded and evaluated on CodaLab?.

'"https://github.com/abisee/cs224n-winl8-squad
http://codalab.org



3 Architecture and Approach
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Figure 1: Architecture Overview

3.1 Contextual Embedding Layer

The GRU cells (Chung et al., 2014) in the existing model for the bidirectional RNN to form the
encodings for question and document word embeddings are replaced with LSTM (Hochreiter et al.,
1997) encoder word sequences to slightly increase the Dev EM and F1 scores from the baseline
and Coattention models as seen in Table 1, and are defined as X@ = [x?, xQQ, wsgr] and X =

[zP, 2D, ..., 2D] respectively.

3.2 Coattention Layer

The next procedure after generating the contextual embeddings is to apply the attention layer be-
tween the two question and document embedding tensors. The following layer replaces the existing
BasicAttn class from the base project with a new CoAttn class. The Coattention mechanism
that attends to the question and document simultaneously is based on the Coattention encoder from
the DCN model (Xiong et al., 2017), and fuses both attention question and document contexts.
Figure 3 provides a visualization of the Coattention encoder.

3.2.1 Question and Document Encoder Sentinels

First, sentinel vectors acg and x5 (Merity et al., 2016) are concatenated to each embedding respec-
tively, in order to allow the model to not attend to any particular word in the input as demonstrated
by the illustration in Figure 2.
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Figure 2: Visualization of the pointer sentinel-RNN mixture model. The query is used by the pointer
network to identify likely matching words from the past. Probability mass can be directed to the
RNN by increasing the value of the mixture gate g via the sentinel, seen in grey.

Let the resulting sequences be defined as the third-order tensors:
Q = [2%,28, ..., 29,29 = [X?; 28] e RAX (D) (1)
D=[zP 22, .. 2D 2D] = [XP;zD)] & RERER ekt 2)

where (3 represents the dynamic batch size of the current iteration, and ¢ represents the hidden layer
size.

Next, a non-linear projection layer is then applied on top of the question encoding to allow for
variation between the question and the document encoding spaces, as defined by:

Q= tanh(Wi(jQ)Q;jk 1 b(Q) ¢ REXEX (D) 3

where W(@) € R*¢ ig a trainable weight matrix with Xavier initialization (Glorot et al., 2010)
and b(@) € R™H! is a trainable bias vector with values initialized at zero. The Einstein summation
convention is used to convey the product result of the matrix W (?) and third-order tensor Q".

3.2.2 Coattention Encoder

To obtain affinity scores which correspond to all pairs of the question and document words, let the
affinity tensor L be defined as:

L= DTQ c Rﬁx(m+1)><(n+1) 4)
Next, the affinity tensor is normalized with probability distribution with respect to the question

dimension row-wise to obtain attention weights A%, and context dimension column-wise to obtain
attention weights AP via the softmax function:

A@ = softmax(L) € RA*(m+1)x(n+1) )
AP = softmax(LT) e RAX (n+1)x(m+1) ©)
(N
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Figure 3: Coattention encoder. The affinity matrix L is not shown here, but instead directly shows
the normalized attention weights AP and A®.

The summaries, which are essentially attention contexts of each word of the question and the docu-
ment respectively, are defined by:

C® = DAR e R x(n+1) 8)
CD — [Q, CQ]AD c RﬁleX(m+1) 9)
(10)

where the notation [a; b] is defined as concatenation of tensors with respect to the ¢ dimension, and
C® AP can be interpreted as the mapping of question encoding into space of document encodings.

Finally, a bidirectional LSTM fuses the temporal information to the Coattention context, and the
sentinel vector 2 is truncated, producing the attention output tensor U

g = Bi-LSTM(us_1, teq 1, [di; cP]) € RP¥% (11)
U = [ug, ..., Um] € RAX2EXm (12)
(13)

where u;_; and u;,; are the forward and backward timesteps.

The resulting tensor U is then transposed so UT € R#*™*2¢ i5 compatible with the existing archi-
tecture to apply the matrix for masked context values M P € R#*™ which is essentially a binary
mask with a value of 1 when there is a real value, and a 0O for padding. Applying one last fully
connected layer, which also reduces the vector space dimensionality of the ¢ dimension:

U’ = ReLU(UT) € RAxmx¢ (14)

which U’ is then used as the input to the layer of computing the start and end probability distributions
via a masked softmax function applied to the blended representation [X ?; U"].



4 Experiments

4.1 Implementation and Metrics

The model is trained and evaluated on the SQuAD dataset, and uses pretrained GloVe word vectors
on the Common Crawl corpus (Pennington et al., 2014). Running the experiments and viewing the
results on TensorBoard displayed key metrics to determine optimal values for various hyperparam-
eters. Each experiment was ran for approximately 10k to 15k iterations and generally stopped when
the Dev F1 and EM scores continued to stay plateaued after several thousand iterations, indicating
that the model was not improving despite the Training F1 and EM scores rising since by that time
the model overfitting to the data was occurring.
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Figure 4: Dev F1 and QAModel Loss on TensorBoard after 12,000 iterations.

4.2 Hyperparameters

Based on the word length histograms of the Train and Dev datasets illustrated in Figure 5, the context
word length from both sets were sparse past ~450, so the hyperparameter context_len was re-
duced from 600 to 450 to optimize the run time for each training iteration. To further fit the model to
allow higher complexity, the hyperparameter for the GloVe word embeddings embedding_size
was increased from 100 to 200, which lead to more than a 10% F1 score increase. We use a dropout
rate (Srivastava et al., 2014) of 0.2 to regularize our network during training to mitigate overfitting,
and optimize the model using the ADAM Optimizer (Kingma et al., 2014).

context question
014 == train
0010 s i
dev dev
012
2 0008 z
g g 010
H] -
g g
£ 0006 & 008
3 3
L 5 006
E 0.004 E
2 2 004
0.002
0.02
0,000 - - - - - 000 - . - -
0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60
Word Length Word Length
(a) Context Word Length Frequency (b) Question Word Length Frequency

Figure 5: Context and question word lengths of the provided Train and Dev datasets. Since the
Train dataset is orders of magnitude larger than the Dev dataset, the frequency along the y-axis is
normalized to visually compare the word lengths along the x-axis more accurately.



4.3 Results

The two evaluation metrics on the SQuAD dataset consists of exact match (EM) score, and F1 score.
The EM score is evaluated based on the exact word sequence match between the predicted answer
and a ground truth answer. The F1 score is evaluated based on the overlap between words in the
predicted answer and a ground truth answer. Since there are some instances in which a document-
question pair may have many ground truth answers, the EM and F1 scores for a document-question
pair is evaluated as the maximum value across all ground truth answers. The Dev EM and F1
score results were recorded for each of the variations of the model by either running the project in
official _eval mode or the result if the model was uploaded to the dev set on CodaLab, and are
listed in Table 1. Finally, the overall metric is then averaged over all document-question pairs. The
official SQuAD evaluation is hosted on Codal.ab, which contains the training and development sets
that are publicly available while the secret test set is withheld.

Model with variation | Dev/Test EM  Dev/Test F1

Baseline default 34.90 43.93
LSTM 35.79 44.95

Coattention Layer *LSTM 49.87 64.99
lower learning rate (0.0005) | 49.08 63.50
*higher dropout rate (0.2) 50.2 64.90
*200D GloVe 61.47 71.68

References

DCN (Xiong et al., 2017) Ensemble 71.6 80.4

BiDAF (Seo et al., 2017) Ensemble 73.3 81.1

Table 1: The variations marked with an asterisk* are included into the final model. The bolded
values are the scores received after uploading to the CodaLab Dev set. The italicized values are the
scores received after uploading to the CodaLab Test set.

4.4 Analysis of Examples
Due to above limitations of our implementations and also dataset, we did observe certain adversarial
examples along with good ones.Some of them are listed here: Example-1 “ How”

Paragraph:* quickbooks sponsored a “ small business big game ” contest , in which death wish
coffee had a 30-second commercial aired free of charge courtesy of quickbooks . death wish coffee
beat out nine other contenders from across the united states for the free advertisement .”

Question: how many other contestants did the company , that had their ad shown for free ,beat out?
True Answer: nine

Model predicts: nine

F1 Score : 1.000

EM Score: True

Example-2 “ How ”

Paragraph:* the crew of apollo 8 sent the first live televised pictures of the earth and the moon back
to earth , and read from the creation story in the book of genesis ,on christmas eve , 1968,which had
been a troubled year for the us , marked by vietnam war protests , race riots , and the assassinations
of civil rights leader martin luther king , jr. , and senator robert f. kennedy . ” Question: how many
other contestants did the company , that had their ad shown for free , beat out ?

True Answer:one-quarter
Model predicts: one-quarter
F1 Score: 1.000



EM Score: True
Example-3 “ What”

Paragraph:* in early 2012 , nfl commissioner roger goodell stated that the league planned to make
the 50th super bowl “ spectacular ” and that it would be ” an important game for us as a league .”
Question: what one word did the nfl commissioner use to describe what super bowl 50 was intended
to be ?

True Answer:spectacular
Model predicts: spectacular
F1 Score: 1.000

EM Score: True

Example-3 “ What”

Paragraph:* southern california is home to many major business districts . central business districts
(cbd) include downtown los angeles , downtown san diego , downtown san bernardino , downtown
bakersfield , southcoast metro and downtown riverside .” Question: what is the only district in the
cbd to not have “ downtown ” in it ’s name ?

True Answer: south coast metro

Model predicts: central business districts
F1 Score: 0.000

EM Score: False

So we see above model has limitations. This may be due to contextual neighbor support which is
limitation of GloVe.

Example-4 “ Which*“

Paragraph:* prime numbers have influenced many artists and writers . the french composer olivier
messiaen “used prime to create unpredictable rhythms : the primes 41,43 , 47 and 53 .appear in the
third e’tude ,“ neumes rythmiques ” .according to messiaen this way of composing was ” inspired
by the movements of nature, movements of free and unequal durations

Question: in which etude of neumes rythmiques do the primes 41 , 43 , 47 and 53 appear in ?
True Answer:the third e tude
Model predicts: third

F1 Score: 0.667 EM Score: False This is same issue as in Example-3 Above observation suggests
that if we have pre trained senetence level embedding it would probably solve contextual issues and
accuracy can be improved.

5 Conclusion

We successfully implemented an end-to-end deep learning model for the ”CS 224N Default Final
Project: Question Answering”. We were able to achieve promising preliminary results for this very
challenging problem. Our accuracy and loss curve looks promising though further improvements
are possible. As an outcome of this exercise, we wish to highlight certain improvements we wanted
to make, certain issues which we faced and tuning which we did to achieve results.

5.1 Further Improvements

We definitely could have improved it by using character CNN embeddings but due to time constraints
we did not fully implement it. With more time, we would love to investigate more hyper-parameter
decisions. With more time, we would like to run a proper hyperparameter search algorithm over
other parameters (e.g. batch size, LSTM hidden layer dimension, and hopefully converge on values
that would boost our performance.



Other improvements that could have been completed but were not included are ensembling multiple
models, and implementing the Highway Maxout Network (Xiong et al., 2017) as an intermediate
layer between the Coattention layer and the output probability distribution layer.

We observed certain limitations of the SQuUAD dataset which could have actually underplays the
efficacy of our model. Since every answer to a question in SQuAD is a fixed pair of indices, the
question answering task leaves no room for nuance and can mark other technically correct answers
as incorrect.In short, our performance on the Question Answering task appears to be a good start, but
our model certainly has limitations as described above along with the fact that there seems to be a
theoretical limit on just how useful SQuAD can be as a proxy for measuring reading comprehension
given the lack of nuance in answer choices.
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