A Bidirectional Attention-Based Approach to
Machine Comprehension and Question Answering

Kevin Chen
Department of Computer Science
Stanford University
kvchen@stanford.edu

Abstract

In this paper, we replicate the results of the bidirectional attention-based approach
to question answering first introduced by Seo et al. [1]. We attempt to improve
upon this model using self-attention as proposed by Wang et al. [2] in the R-net
architecture, but find that using a combination of the two attention types fails
to produce an improvement in accuracy. The performance of our final model
architecture achieves comparable results to the original papers on the Stanford
Question Answering Dataset (SQuAD) [3], with an F1 score of 76.74 and an EM
score of 67.86.

1 Introduction

Question Answering (QA) is a particularly well-known problem in the field of machine comprehen-
sion, in which a model attempts to locate the answer to a query within a passage of text. That is,
given a context C (the passage of text) and a query () about the context, we want to find the span of
contiguous words in the context (Cls;qrt...Ceng) that forms the correct answer A. For example:

Context paragraph: Organized crime has long been associated with New York City, beginning
with the Forty Thieves and the Roach Guards in the Five Points in the 1820s. The 20th century
saw a rise in the Mafia, dominated by the Five Families, as well as in gangs, including the Black
Spades. The Mafia presence has declined in the city in the 21st century.

Question: The Forty Thieves and Roach Guards were two gangs that operated in what area of
New York in the 1820s?

Answer: the Five Points

This task still poses a challenge for many machine learning models, because the interaction between
the context and the query can be very complex. As evidenced by the online leaderboards [3], this
challenge has been a recent area of focus for many research groups and companies.

2 Background/Related Work

Previous approaches in this area have made heavy usage of recurrent neural networks (RNNs), which
output a hidden state for each timestep in a sequence. This can be used to generate a vector represen-
tation that encodes information from each of the context and the question, similar to the idea behind
word embeddings. The problem with this approach is that most models utilize only the final hidden
state from the RNN, which may have already forgotten information from the beginning of the se-
quence by the time it reaches the end of the sequence. This makes long-term sentence dependencies
difficult to deal with.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

To counteract this issue, recent approaches have centered around the idea of attention. The idea
behind attention is simple; we want the decoder to focus on different parts of the input at each step
of the decoding process. To accomplish this, all the hidden states from the RNN are combined to
generate a new sequence, which is then fed into the decoder. By looking at a combination of all the
hidden states and not just the final state, the attention model is able to more accurately determine
which parts of the context and query are relevant.

In this paper, we investigate two different attention-based methods: bidirectional attention and self-
attention. We look at ways to combine these two different methods and effects this has on the model
accuracy. Our final model most closely resembles the BiDAF architecture and uses a bidirectional
attention flow to create context and query representations that encode information about each other.

3 Approach

Our final approach is heavily based off previous work in the BiDAF architecture [1] with an addi-
tional self-attention layer [2]. These layers are documented in detail in their respective papers, so
we only provide an abbreviated version of their implementations here.

3.1 Character Embedding Layer

We begin by using character embeddings trained on the GloVE dataset [4]. These embeddings are
fixed-sized vectors that encode information about the most common ASCII characters. In this layer,
we map each word in the input sequence into a character-level representation.

First, we preprocess each word by normalizing its Unicode values into ASCII equivalents as best
as possible. For instance, the string "aid" is converted into "aa" prior to being fed into the charac-
ter embedding layer. Next, we map each letter into its corresponding embedding. We take these
embeddings eq, ..., es, and pass them through a convolutional neural network (CNN) to produce a
sequence of representations h1, ..., hr. Max-pooling is applied to the representations to produce a
final character-level encoding.

3.2 Word Embedding Layer

We again use word vectors trained on the GloVE dataset [4]. We simply concatenate the character-
level embedding to the word-level embedding to produce the final embedding for each token.

One area in which we deviate from the original paper is that we omit the highway network layers as
described by Srivastava et al. [5]. We found that using this network tended to drastically decrease
our model’s performance, but this could also have been due to an incorrect implementation or poor
choice of hyperparameters.

embeddings

GloVE word
embeddings

char-level embedding | word-level embedding

’ token embedding |

Figure 1: Token embeddings

3.3 Contextual Embedding Layer

This layer models the temporal interactions between nearby words to produce refined embeddings.
This is accomplished using a 2-layer RNN with GRU cells in either direction. The output of this
layer is another sequence of contextual embeddings. We share weights for this layer between the
context and query networks, as we found that it helped to boost the accuracy of our model.

token
embeddings

bidirectional
RNN (GRU cells)

Figure 2: Contextual embedding

contextual
embedding

3.4 Bidirectional Attention Layer

This layer allows attention to flow both from the context to the question and from the question to the
context. This ends up producing a series of query-aware context representations.

The first part of constructing this layer is to create a similarity matrix S, which encodes the pairwise
similarity between the context and query words. We use a trainable weight w;,, such that for the
context C' and query @), we have:

92)

i = whnlei g5; ¢i 0 ;] (D

We use S to compute the context-to-query (C2Q) attention, which determines which query words
are most important to each context word. We also compute the query-to-context (Q2C) attention,
which determines which context words are most similar to each query word. These two attention
types are combined to form the bidirectional attention flow layer.

| T context2query
softmax
o | o
A A A

A

column-wise max

——O—0— —O0—
——O—O—O—O—O—
——O—O—O—O—O—
AJaanb
column-wise softmax
———%)—J>—<>—<>—4>—{>—<
———%}—J}—%)—%}—%)—{)—{
———%)—J)—%)—«}—%)—%)—(
Aaanb

I
C I I Il II [N

context context

Figure 3: Bidirectional attention

3.5 Self-Attention Layer

Although it didn’t end up in our final model, we also tried adding a self-attention layer immediately
after the bidirectional attention layer. Self-attention allows us to aggregate information from the
entire context in determining the answer.

T

| |
T T T T
— - - -
ITI\TIIT\IT!

context attentions

context attention

Figure 4: Self attention

3.6 Modeling Layer

Our modeling layer takes in the query-aware context representations GG and, similar to the contextual
embedding layer, outputs representations modeled around interactions with nearby words. These
representations)M are obtained by passing G through a two-layer bidirectional RNN.

W I I O |
JHl) &H
0y o B oy
| 0 [B

Figure 5: Modeling

modeling output

|
I

|
I

|
7

|

3.7 Output Layer

We determine our start index by first taking a softmax over a fully connected combination of the
attention output G and the modeling output M.

pl = softmax(wz;l)[G; M)))
We compute the output position by passing M through an RNN, then through a fully-connected

softmax layer:

M? = RNN(M) 3)
= softmax(w(z;,g)[G; M?)) “4)

Dense +
softmax

START END

Figure 6: Output

RNN + softmax

We subject the final indices to the constraint that the end index is within some distance after the start
index. That is:

Tstart < Tend < Tstart + max_span (5)

4 Dataset and Experimentation

We train our model using the Stanford Question Answering Dataset (SQuAD) [3], which consists
of over 100,000 question/answer pairs on over 500 Wikipedia articles. To preprocess this data, we
first use the NLTK library [6] to split each sentence up into word tokens. Each word token is further
broken down to character tokens by first converting the individual Unicode characters to their ASCII
equivalents (or omitting them if they fall outside a useable range). Each of these word and character
tokens is then converted into an embedding using pretrained GloVE vectors [4] for use in our model.

To determine suitable hyperparameters for our model, we first looked at the word token lengths
for each of the context and the question (Figure 7). We also look at how many characters are in
each word for both the context and question (Figure 8). Finally, we examined the answers in our
training dataset (Figure 9). We expect our model’s output distributions to roughly match these
answer distributions.

Context lengths Question lengths

20000
20000
17500
15000
15000
12500

10000

Frequency
Frequency

10000

7500
5000 5000

2500

0 100 200 300 400 500 600 700 800 0 10 20 30 40 50 60
Words Words

Figure 7: Context and question length histograms

Context word lengths Question word lengths
35000 16000
30000 14000
25000 12000
>
g & 10000
& 20000 3
=] i~
g g 8000
£ 15000 [
6000
10000
4000
5000 2000
0 0
10 20 30 40 50 60 5 10 15 20 25 30
Characters Characters

Figure 8: Context and question word length histograms

Start and end indices for answer span Answer span length
start 50000
20000 end
40000
15000
oy 3
c £ 30000
o o
El El
> T
0 10000 14
e - 20000
2000 10000
0 0
0 100 200 300 400 500 600 0 10 20 30 40
Index Words

Figure 9: Context and question word length histograms

We performed repeated trials on our final model with different hyperparameters and end up with the
final set listed in Table 4. These hyperparameters were generated not only based on the final accuracy
of the model, but also the difference between the train and dev scores, as well as the training time
for each batch.

Table 1: Hyperparameters

Hyperparameter Value
Word embedding size 100
Character embedding size 300
Batch size 100
Adam learning rate 0.001
Maximum gradient norm 5.0
Dropout probability 0.2

Maximum context length 350
Maximum question length 25
Maximum answer span 15

4.1 Ensembling

To maximize the performance of our architecture, we used an ensemble of 7 models all trained
using the same hyperparameters mentioned above. We use a slightly different strategy from the
usual consensus voting model, since the selected answer spans can often vary wildly. Instead, each
model outputs a (prediction, certainty) pair for each (context, question) pair in the test set. We
take a weighted sum of each prediction by its certainty, and select the prediction with the highest
score. This ensures that even if all the answers are different, we still select the one with the highest
probability of being correct.

5 Results and Analysis

5.1 Performance

Our model performed fairly well on the final test set, coming in 24th place for F1 and 17th for EM.
However, we noticed that our results significantly trailed those of the original papers with a 5 point
difference under the original BiDAF paper (Table 2).

Table 2: Results on the SQuUAD test set

Single Model Ensemble

Model F1 EM F1 EM
BiDAF 773 68.0 81.1 733
R-Net 77.5 684 79.7 721

Our model 747 64.3 76.7 659
Baseline 429 343

We also looked at how much each feature layer contributed to the overall performance of the model.
We took each layer and replaced it with its baseline counterpart (for example, replacing the modeling
layer with a fully connected layer instead). These values are computed at training time and use
different accuracy rules that results in lower F1 and EM scores from those in other tables. However,
the relative impact of each layer is still fairly evident in (Table 3).

Table 3: Layer contributions

Layer F1 (delta) EM (delta)
Without char CNN 51.5(-1.8) 66.8 (-1.8)
Without bidirectional attention 52.6 (-0.7) 67.9 (-0.7)
Without modeling 49.6 (-3.7) 65.0(-3.6)
Without RNN output 53.1(-0.2) 68.3(-0.3)
With self-attention 449 (-84) 60.2(-8.4)
Final model 53.3 (+0.0) 68.6 (+0.0)

Of particular note is the contribution of self-attention, which ended up severly impacting our per-
formance. This is likely because self-attention simply doesn’t work with the rest of the BiDAF
architecture, whether it comes right after the bidirectional layer or otherwise. We failed to inves-
tigate how the original R-net architecture uses this particular layer, so plugging it straight into our
model was a poor choice without fully understanding the ramifications of this decision.

We broke our performance down into six categories based on question keyword that appeared in
that question. We notice that we do best on questions that identify things (what, who), and poorly
on questions that require more reasoning (how, why) (Table 4). We attribute this to our attention
model; object identification often has shorter answers, so the model is more likely to attend to these
important phrases and come up with the right answer. On the other hand, questions that involve
reasoning often have longer answers, so our model is less likely to attend to the correct and complete
part of the context that contains the answer.

Table 4: Performance on different question types (dev)

Question keyword Total Correct Fraction correct

what 1337 943 0.705310
how 309 195 0.631068
when 173 115 0.664740
who 147 104 0.707483
where 77 51 0.662338
why 7 4 0.571429

5.2 Qualitative Error Analysis

We found that many of our errors fell into the same few categories. The first is simply a failure to
attend to the correct part of the context. In these cases, the model selects an important phrase, but
oftentimes it misses the overall context in the sentence required ot answer the question. This formed
the majority of our errors.

Context paragraph: The previous record was 244 yards by the Baltimore Ravens in Super
Bowl XXXV. Only seven other teams had ever gained less than 200 yards in a Super Bowl, and
all of them had lost. The Broncos’ seven sacks tied a Super Bowl record set by the Chicago
Bears in Super Bowl XX.

Question: What team had the lowest downs and yards ever in the Super Bowl as of Super Bowl
50?

Our Answer: Baltimore Ravens

Correct Answer: the Broncos

A second less-common source of answers was ambiguous answers, where there are two potential
correct answers the model picks the incorrect one. In the example below, humans would know to
pick the first (and likelier) answer; however, this requires prior knowledge outside of the context.

Context paragraph: However, some civil disobedients have nonetheless found it hard to resist
responding to investigators’ questions, sometimes due to a lack of understanding of the legal
ramifications, or due to a fear of seeming rude.

Question: Why have civil disobedients found it hard to reset responding to investigator’s ques-
tions?

Our Answer: fear of seeming rude

Correct Answer: lack of understanding of the legal ramifications

The third is simply picking incorrect answer boundaries. This impacts our EM score greatly, but has
less of an impact on our F1 score. This could likely be solved through a more sophisticated process
for determining the final answer span.

Context paragraph: In 1978 a disco version of the theme was released in the UK, Denmark
and Australia by the group Mankind, which reached number 24 in the UK charts.

Question: What place did the theme reach in Europe?
Our Answer: 24
Correct Answer: number 24

5.3 Overfitting

RNNs are often prone to overfitting, and despite adding dropout to all of our layers and between
individual RNN cells we found that our model was still consistently overfitting with a 15 point
difference between our performance on the training and dev sets (Figure 10). We intended to imple-
ment variational dropout as proposed by Gal and Ghahramani [7], but ended up not finishing it in
time for the final model.

Train vs dev F1 score Train vs dev EM score

—— dev 07 E== dev
0.8 —— train —— train
0.6 /‘/Jv/‘

F1 score
o
o

g

o

=
n
EM score

1)
S

o °©
W IS

)
W
o
N

0 5000 10000 15000 20000 0 5000 10000 15000 20000
Step Step

Figure 10: Context and question word length histograms

6 Conclusion and Future Work

We were partially successful in reimplementing the BiDAF architecture and in testing an additional
self-attention layer. Unfortunately, we were unable to achieve the results listed in the original papers.
This could have been due to a suboptimal choice in hyperparameters or implementation details, as
these details were elided in the original papers. It is also possible that parts of our implementation
were simply incorrect, as machine learning models tend to be difficult to debug in practice.

We would also like to make better use of the training set, as we only use one of the potential answers
for each question. The training dataset actually includes multiple human-sourced answers for each
question, so we could’ve easily greatly increased the size of our training dataset.

6.1 Acknowledgements

I would like to thank the entire CS224n staff for their hard work and dedication to the course. I
would also like to thank Microsoft for providing Azure credits so that I was able to train my models

in a timely manner.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention flow
for machine comprehension. CoRR, abs/1611.01603,2016. URL http://arxiv.org/abs/1611.01603.

Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-matching networks
for reading comprehension and question answering. In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, ACL 2017, Vancouver, Canada, July 30 - August 4, Volume 1:
Long Papers, pages 189-198, 2017. doi: 10.18653/v1/P17-1018. URL https://doi.org/10.18653/
v1/P17-1018.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+ questions for
machine comprehension of text. CoRR, abs/1606.05250, 2016. URL http://arxiv.org/abs/1606.
05250.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for word repre-
sentation. In EMNLP, volume 14, pages 1532-1543, 2014.

Rupesh Kumar Srivastava, Klaus Greff, and Jirgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.

Steven Bird. Nltk: The natural language toolkit. In In Proceedings of the ACL Workshop on Effective Tools
and Methodologies for Teaching Natural Language Processing and Computational Linguistics. Philadel-
phia: Association for Computational Linguistics, 2002.

Y. Gal and Z. Ghahramani. A Theoretically Grounded Application of Dropout in Recurrent Neural Net-
works. ArXiv e-prints, December 2015.

10

