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Abstract

We develop a task-oriented dialogue agent capable of responding to user queries
with increasing levels of sophistication. Unlike chatbots, which simply seek to
sustain open-ended conversation, task-oriented agents additionally aim to satisfy
user goals in domain-specific topics. In doing so, task oriented dialogue often
must model some form of user intent while also planning over multiple turns.
Historically, the user belief state was explicitly maintained by the agent, but
more recently, research has gone in the direction of representing the user intent
through continuous vector embeddings obtained through neural networks. This
paper replicates work in this direction, as well as adapts newer architectures that
have yet to be widely applied to the problem of goal-oriented dialogue.

1 Introduction

Recent years has seen a tremendous growth in interest towards dialog agents, including voice-
activated bots such as Siri, text-based chatbots on Slack, or email-based bots for scheduling meet-
ings. Going beyond holding a conversation, a task-oriented dialog agent has the additional aim of
helping users complete tasks such as reporting the weather or navigating through traffic. As the
prevalence of such personal assistants continues to grow, so too does the desire for increased capa-
bilities. However, many of these so-called intelligent agents fall short of expectations, often failing
to return any useful information to the user [12]. Thus, industry practitioners predominantly lean on
conventional machine learning methods when deploying dialog agents in production [22].

However, as the abilities of dialog agents are incrementally improved, it is not hard to imagine
reaching a tipping point where a number of real-world tasks, such as call centers, are replaced or
automated by such systems. The difficulty of this problems lies in three main areas. First, an agent
must perform language modeling by producing a meaningful response given a user query. Addi-
tionally, since conversations can last multiple turns, the dialogue state must be stored as some user
belief to keep track of the history of the discussion [23]. Finally, goal-oriented agents also include
an information retrieval component for querying facts from a knowledge base (KB). Accordingly,
this project incrementally applies a number of modern deep learning techniques to build an effective
goal-oriented dialog system [6] for the task of restaurant recommendations.

2 Related Work

Research into goal-oriented dialog historically consisted of cobbling together a collection of mod-
ules to generate a user output with components commonly built for parsing raw input, tracking user
beliefs, retrieving templates and generating language [23]. Moreover, such models stored and up-
dated the user’s intent explicitly throughout the conversation. More recently, the explosion of deep
learning has spread into numerous academic disciplines and natural language processing is no excep-
tion [4]. These systems have incorporated neural networks approaches [22] as well as reinforcement
learning [14] to the problem of neural text generation and intent tracking.



In particular, neural language modeling has seen promising progress through the deployment of
sequence-to-sequence models that take in a series of tokens and connect to a second network that
outputs a different set of tokens [21]. The first network, referred to as the encoder, has taken on in-
creasingly sophisticated forms ranging from vanilla RNNs to gated networks [19] and Transformer
networks [20]. Similarly, the second network, referred to as the decoder, has also grown in com-
plexity by adding adaptations such as attention [1], memory [2] and diversity scoring [13].

The most direct comparison comes from [6] who uses an end-to-end model for generating agent
responses where they deviate from past attempts by using an end-to-end differentiable model that
holds onto user intents through implicit vector embeddings. This builds directly on the work of
[2] who establish these as the BaBI Dialog tasks. In further work, Mihail et. al. apply additional
methods to an in-car domain using Key-value Retrieval networks [7].

3 Approach

Our baseline model is a basic sequence-to-sequence system consisting of an encoder and decoder.
Generally speaking, the encoder is responsible for reading the user utterance at each time step and
encoding the entire sequence into a latent representation. Based on this last hidden state, the decoder
outputs a token at each time step, where a token might actually be an API call to a knowledge base
(KB), which continues until we reach an special end-of-sentence token. This output is then joined
together to represent the agent response.

3.1 Cell Type

As the first extension, we replace the vanilla RNN with gated RNNs including GRUs [5] and
LSTMs [9]. These units control the flow of information using gates that decide whether to directly
pass along the training signal, which ameliorates the vanishing gradient problem. Improvements can
sometimes be achieved by stacking GRU layers together, so we test this idea by tuning the number
of layers within our RNN, as well as incorporating bi-directional layers.

3.2 Attention

For the next level, we implemented the attention mechanism1, which allows the decoder to access a
weighted combination of all the encoded hidden states instead of only the last one [15]. Intuitively,
the attention mechanism allows the decoder to “pay attention” to words many timesteps back based
on its current hidden state, allowing direct access to the user input when it encoded. Calculating
this weight is a function of the scoring mechanism employed and can possibly result in different
performance?2, so we test numerous popular options.
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3.3 Copy Mechanism

The copy mechanism augments the system with the tokens found in the input sequence, which allows
the decoder to generate those words in addition to words found the original vocabulary [8, 10]. By
gaining such access, the decoder is better equipped to deal with out-of-vocabulary (OOV) issues
when facing unknown tokens. For example, if a user requests a type of cuisine (i.e. Taiwanese)
not previously encountered by the agent, it is now able to respond with a coherent “We do not have
Taiwanese food available” rather than “We do not have <UNK> available”.
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More concretely, the softmax is extended during each decoding step where the option to generate
from the vocabulary and the option to copy from the input sequence compete directly with each
other. This can be seen in the figure above 3.3, where the Generation Mode and Copy Mode share
the same normalization constant Z when calculating their conditional probabilities. The ability
to generate is decided by processing the decoder hidden state with W, before selecting from the
vocabulary v. In contrast, the ability to copy is decided by first pre-processing the encoder hidden
state with T/, and a sigmoid before being compared against the decoder.

3.4 Transformer

While RNNs have displayed meaningful gains over previous non-neural attempts, new research has
emerged that proposes simpler methods for text generation. Specifically, authors from [20] intro-
duce a relatively radical idea that “attention is all you need” to perform machine translation, doing
away with recurrent relations altogether. This novel Transformer network simplifies the architecture
by relying solely on attention with basic feed-forward networks, and if implemented correctly, also
significantly reduces training time by allowing for parallelized computation across multiple words.
At a high level, the Transformer pushes the advantages of attention to the extreme by adding numer-
ous skip-connections to every time-step that allow it to simultaneously look backward and forward
at all words, so encapsulating knowledge in an ordered hidden state is no longer necessary.
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Scaled Dot-Product Attention generalizes attention by introducing a query ), key K and value V,
where the query is compared to the key in order to extract the value. In a typical attention setting,
the query is the decoder hidden state, the key is the encoder outputs and the value is also the encoder
output. Our model actually maintains this paradigm, but it should be noted the key could describe
an item in the KB and differs from the item itself as studied in [16]. Multi-head attention works
by first shrinking each of [Q, K, V] into a smaller dimension, running the result through multiple
feed-forward networks and concatenating the final output. The shrinking factor is often the same
ratio as the number of heads to maintain the same output dimension.

Beyond the new attention mechanisms, the network also augments the inputs by imbuing them with a
sense of where the word is located in the sentence. This is done by simply adding a static positional-
embedding. Right before prediction, a position-wise feedforward network adds more parameters
to improve the output, with LayerNorm and ResNet connections sprinkled throughout. While the
network uses a copious amount of tricks, at the end of the day, it is still just an encoder coupled with
a decoder and can be analyzed accordingly.

4 Experiments

4.1 Datasets

Our data sources come from the BaBI Dialog dataset, put together by Facebook and described in
[2]. Before we are able to start training our model, a large portion of time and effort was spent pre-
processing the data. Concretely, we needed to transform the input utterances into embedding vectors
by tokenizing each sentence and then indexing into our custom vocabulary to extract a word embed-
ding. For simplicity, we employed the built-in word embedding methods offered by PyTorch [3]
since we have a relatively limited vocabulary size of 1,229 words.

Furthermore, a key factor in the restaurant task is keeping track of the user preferences along the
dimensions of the possible restaurant traits such as price range and location. Therefore, the em-
beddings of these key entities are augmented with additional match features indicating that they are
important to the conversation [17]. Specifically, a eight dimensional one-hot vector is appended
to the end of each token representing whether it is one of seven special entities. If the eight bit is
flipped on, then it indicates that the token is not a special item. Adding this extra information often
helps training, which we experience as well.

In more detail, The BaBI dataset consists of six tasks, all surrounding the topic of helping a user
find a restaurant to eat, given their stated desires. Example preferences include:

e Type of cuisine (91 choices) - Japanese, French, Thai, Chinese

Location (10 choices) - London, Tokyo, Miami, Berlin

Price (3 choices) - cheap, moderate, expensive

Rating (8 choice) - integers ranging from 1 to 8

Additionally, the knowledge base for certain scenarios also includes the phone number and address
of the restaurants in case the user requested that information in follow-up questions. The first five
tasks were created using a collection of rules and thus can be solved completely by a rule-based
agent if those rules are reverse engineered. However, using gradient-based methods to infer those
rules is indirect, so performing well remains non-trivial. Concretely, the tasks require the agent to:

. Issue API calls

. Able to change their mind and update API calls

. Return a list of restaurants and rank

. Provide extra information (i.e. phone number or address)

hn A W N =

. Combine all requirements from tasks from 1-4

The sixth task is adapted from the Dialog State Tracking Challenge (DTSC) [23] and has the same
premise but much more realistic conversations. Since Task 6 is the most applicable to real world
scenarios, we decide to run our experiments primarily on this dataset.



4.2 Evaluation Metrics

To evaluate our performance against results of [2] and [6] we calculate the per-turn accuracy which
is percent of the number of turns where the agent completely predicts all tokens, within all examples.
Recall that a certain number of turns then add up to form a full dialog. Accordingly, if all the turns
within a dialog are accurate then that dialog is also accurate. The percent of these within all example
is considered the per-dialog accuracy.

We also look to the BLEU score which is a standard NLP metric since it has been shown to correlate
well with human judgments. At a high level, BLEU is calculated as a weighted percent of n-gram
overlap from the prediction and the target tokens. Next, we also visualize and analyze the attention
weights of various implementations to gauge their through process. Finally, since our model is a
conversational agent, we also evaluate the output by directly ”chatting” with the bot and measuring
the quality of the response in terms of fluency and helpfulness.

4.3 Parameter Tuning

Our experiments were run on Titan Xp GPUs from Nvidia where most trials lasted around half an
hour with a standard deviation of 4 minutes. Training on CPUs was noticeably slower, but surpris-
ingly tractable with speeds clocking in at 40 minutes on average. We optimize for lower perplexity
by using a negative log-likelihood loss function. During evaluation, performance exhibited high
variance even for the same set of hyper-parameters, highlighting the unevenness of the landscape.
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Figure 4: Validation loss across multiple initializations of a single model using the same params.

Dropout: Starting at 50% drop rate, we steadily lowered the amount of dropped units in increments
of 10% from layer to layer and noticed an improvement in performance in validation loss until we
reached 20% 5. In the figures below, the 5 epochs (out of 25) are truncated so we can more closely
analyze the distinctions between the different curves. As we can see, continuing to push this down
to 10% and no dropout causes the loss to go back up, so we settled on 20% as the right balance.
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Attention: In comparison to dropout, the type of attention method did not cause too much of a
difference as all 3 styles performed roughly the same 6. Just as before, the results shown are averaged
across three different runs, using the same settings with all other parameters held constant on Task
5. In the end, the best model happened to using dot attention, but these experiments suggest that this
result might have just been due to a lucky run rather than some fundamental underlying cause.

Layers: When deciding on the final size of the model, we note that models with more parame-
ters have greater power to fit the data, but may cause overfitting as we trade-off between bias and
variance. Additionally, larger models with often also take longer to train, so in the event that perfor-
mance is roughly the same, we always choose the smaller network.

Based on preliminary results, we settled on a two layer network 7 with a hidden size of 256 8 which
performed roughly as well as much larger options. As another experiment, we also exchanged
the typical encoder with a bi-directional encoder. A single layer bidirectional encoder with 512-dim
ended up performing the best, which is quite interesting since the forward and backward hidden sizes
are 256 units. This effectively means we are back to the same 2-layer network we had just found
earlier, with just one of the directions flipped. We use the bidirectional version moving forward.

Num Layers Bidires Hidden unit size

Training loss 0.94 0.90 1.06 0.91 Training loss 0.98 0.90 1.02 0.95

Validation loss 121 115 1.16 114 Validation loss 121 115 134 112

Figure 7: Tuning number of layers Figure 8: Tuning hidden state dimensions

We also experimented with a number of other parameters and combinations of variables. The best
model ended up with a hidden size of 256, 1 bi-directional layer, learning rate of 0.01 annealed at
every 8 epochs, 20% drop rate, 0.01 weight decay, dot attention, and 0.6 teacher forcing ratio.

5 Results

5.1 Cell Type

Moving from a vanilla RNN into a gated cell showed a meaningful jump in improvement as the
model was able to look further back in the utterance to get a signal. The difference between a GRU
and LSTM was minimal, and since the GRU has fewer params we used that moving forward.
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Figure 9: Training loss results on using gated cells and bidirectional layers

5.2 Attention and Copy Mechanism

While the type of attention did not cause a meaningful jump, the use of attention itself was critical for
high performance 10. Accordingly, the addition of the copy mechanism also improved performance
as expected, which on the graph is called ”Combined”. The low result seen on the graph is actually
the copy mechanism by itself without any attention. This makes sense because because without
attention neither the generate mode nor the copy mode have any idea how to look for what to output,
and is strictly worse than the copy mechanism proposed in [8].
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performing models at each feature set Figure 11: Visualizing the attention weights

When we visualize the attention weights 11, we notice that the network has learned to hone in on
keywords when deciding what to output. For example, when it sees the “bye” token, the agent
recognizes that the dialogue has ended and responds coherently. While it is great that the model has
figured out some key words, we must admit that the dataset itself repeats certain phrases multiple
times across many examples, oftentimes word for word. Thus, the good performance exhibited by
the model may be a function of the limited domain rather than truly understanding the user.

| Restaurant | BLEU | Per-Turn | Per-Dialog | Test Loss |
Human Oracle N/A 66.8% 0.0% N/A
Bordes *16 N/A 41.0% 0.0% N/A
Mihail 17 56.0 48.0% 1.5% N/A
Vanilla RNN 27.5 34 % 0.0% 2.455
Bid w/ GRU 50.0 9.94% 0.0% 2.108
Seq2Seq + Attn Only 42.7 20.3% 0.0% 1.964
Seq2Seq + Copy Only 32.6 12.5% 0.0% 2.785
Seq2Seq + Attn + Copy | 43.9 28.6% 1.1% 1.692
Transformer 47.5 0.0% 0.0% 0.984

Table 1: Evaluation on DSTC test data

5.3 Transformer

Turning our attention to the most complex model we notice random spikes in performance in the
last couple of epochs 10, which we attribute to the momentum behavior of Adam [11]. Across
multiple runs, the behavior of networks trained with Adam would be consistently erratic. In fact, for
all other models, we ultimately turned to basic SGD as the optimizer of choice. With that said, the
Transformer indeed ended with the lowest validation loss of all architectures.

So on the surface, it may seem like the Transformer architecture performs the best, but digging a bit
deeper told a different story. Looking at actual agent responses revealed the model had learned to
repeat the most common symbol, usually a period or question mark, followed by the <EOS> token.
Since the <EOS> token is a part of every true response, the agent was able to achieve relatively high
BLEU score due to good unigram and bigram counts. By keeping the response short, it accumulated
very low loss since the system did not penalize any words beyond the end of the sentence. This
behavior also explains why the per-turn accuracy was so low despite doing well on other metrics.

To manage this issue, we improved our masking of the <EOS> token by removing its impact when
calculating BLEU score. Additionally, since the Transformer actually outputs a full sentence during
each prediction, we modified the output to run for a given number of iterations and predicting an
entire response at once. This improved matters by generating than just the top two tokens, but the
sentences were often incoherent. Thus, a couple more tweaks and weeks of hyper-parameter tuning
are still required. Overall, the Transformer seems like a promising direction for dialogue generation,
but (as warned) is a bit finicky to get working properly.



6 Future Work

Based on our results, we believe that we have not matched the state-of-the-art performance, but we
have certainly done much better than random chance. Through our ablation study, we are also glad
to see that the extra features we added helped performance as expected. Finally, we believe that
Transformer can be adapted for conversational agents, but will require a bit more tuning.

From this project, we experienced first hand the joys and pains of parameter tuning, and even when a
model did happen to land in a preferable region of the optimization landscape, the model memorized
the simplest thing possible to generate a reasonable response rather than understanding the user
intent. Thus, for future work, we want to move away from the BaBI dataset and closer to dialogues
that are more varied, with [18] as a great candidate. We also believe that explicitly forcing the agent
to aim for user intent, possibly by incorporating a reinforcement learning policy gradient [14], can
be a promising route. In the end, there is a lot of exciting progress still to be made in the area of
building effective task-oriented dialog agents!
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