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Abstract

A question answering system answers questions posed in natural language based
on a passage of text. The accuracy of such systems is commonly scored by
comparing the system’s answers against human-generated answers. Such
systems can be developed using deep learning models, provided a large enough
dataset containing human-generated reading comprehension question/answer
pairings. One such deep learning model architecture involves encoding the
passage along with the question as word embeddings, feeding through an
encoder-decoder layer with an accompanying attention mechanism. The
experimental evaluations discussed herein focus on how varying the attention
layer of such an architecture affects model performance when measured using
the Stanford Question Answering Dataset (SQuAD).

1 Introduction

In assessing the requirements of a question answering system, a number of baseline requirements
are immediately apparent. Firstly, given that the system will be required to answer any question
posed in natural language about any given passage of text, the scope of possible passages and
questions are any that can be generated using the natural language in question. Given that the
questions may be posed using words not found in the training set, the system will need a way of
interpreting such words. Essentially, every word in the chosen vocabulary will need to have a
representation that captures its general pattern of usage such that questions posed with words not
found in the training set can be accurately answered.

One solution is to use a set of word embeddings such as GloVe[1]. Trained on large corpora such
as Wikipedia, word embeddings learn relationships between words whereby the general usage
pattern of large vocabularies can be captured and encoded as vectors. While GloVe vectors capture
the nature of words’ relationship with other words, capturing the relationship between any given
sequence of words with another requires additional layers of learning.

Since reading comprehension requires an understanding of language structure, a model designed
to achieve question answering must be capable of capturing information about relationships
among groups of words such as phrases. Furthermore, given the possibility of lengthy passages
consisting of many sentences, the effects of such relationships must extend beyond the phrase
level to the broader context of the passage. Recurrent neural networks provide one method for
capturing such meaning. In the realm of sequence to sequence problems such as machine
translation, models that employ recurrent neural networks to first encode an input sentence and a
decoder network to produce the corresponding output sentence have proven effective[2]-[4].



A final layer that has proven critical to high performing question answering systems[5], along with
sequence to sequence models in general[6], is called attention. In this context the attention layer
act as a means to focus on question words that have a particular relationship with context words.
Deep learning models with architectures such as this, complete with attention, have proven
effective in developing question answering systems that perform highly when tested against
datasets such as SQUAD[7].

2 Approach

Given the general architecture described above, the goal of this paper is to measure the
performance gains achieved by several varieties of attention against a baseline implementation. In
particular, this paper will look at attention implementations of the systems described in Effective
Approaches to Attention-based Neural Machine Translation[8)] and Bi-Directional Attention Flow
for Machine Comprehension|9] referred to in this document as Luong and BiDAF attention
respectively. While a baseline implementation of a question answer system using word
embeddings, an encoder-decoder and attention yields promising results, there is nonetheless a
considerable difference in scores obtained by high performing implementations. The goal of these
experiments will be to analyze contributions in performance gains achieved by introducing only
the attention mechanism while keeping all other aspects of the baseline model constant.
Subsequent analysis will focus on gains in overall measures of performance as well as patterns in
the passage-question pairs in which any gains are realized.

3 Model architecture

The process of developing a parent architecture to house the components of the models in question
was aided by the modular nature of each along with the fact that the layers of each architecture are
paralleled in the baseline. Below is a summary of each of the layers in the system along with
descriptions the variants contributed by each system.

Table 1: Model architecture

Baseline Luong Attention BiDAF Attention

Output layer Softmax

Modeling layer

Fully connected

2 layer LSTM

Attention layer

Basic dot-product
attention

Luong global attention

Attention flow
layer

Encoding layer

Bidirectional GRU

Embedding layer

Word embeddings

3.1 Embedding layer

_ M _ g PN
In all model variants the input passage Q= {wt }tzl along with question P= {wt }tzl
Q M PN
are converted to word-level embeddings {et }tzl, {et }tzl‘

All models use GloVe vectors for the word embeddings. Although various tweaks may be made to
the embedding layer to improve model performance, in our case the word embedding part of this



layer will be held constant. 300-dimensional GloVe vectors trained on a 6 billion token corpus will
be used across the board. Furthermore, these word vectors will not be trainable.

3.2 Encoding layer

In the encoding layer, embeddings of the question and passage are passed through a bidirectional
recurrent neural network (RNN) resulting in a new representation of each. A bidirectional GRU is
used in this layer, with the forward and backward output sequences concatenated.

u® = BiGRUQ(e?,...,e%)
uP = BiGRUp (el ..., ek)

While the BiDAF paper describes using LSTM cells in this layer, GRUs were found to perform
similarly in testing and consequently were employed in the final implementation given their
relative computational cheapness.

3.3 Attention layer
The baseline model employs basic dot-product attention, whereby the encoded passages attend to
the encoded questions.

S = [uPTuQ, ...,ufTu?/f] cRM

o' = softmaz(S') € RM

The resulting attention distribution is then used to take a weighted sum of the encoded questions
producing the attention output. This output is then concatenated to the encoded passage to give
blended representations.

M
= g ozz-u]iQ € R
j=1

b; = [UZQ,CLZ] c R4h V; € {1,,N}

3.3.1 Luong attention

In the original paper from which this attention implementation is derived, Effective Approaches to
Attention-based Neural Machine Translation describes two variants. These are referred to as
“global attention” and “local attention.” The implementation used in this case will be global
attention. The implementation mirrors that of the baseline attention implementation, however the
“score function’, symbolized as S in the baseline equations, uses the “general” form whereby
W is a trainable weight matrix.

5 = [ufTWau-Q ...,ufTWau%] eRM

7 )

3.3.2 BIDAF attention

The attention flow layer of the BIDAF model involves computing attention in both directions. In
the first instance, a similarity matrix calculated between the encoded passage and question is

calculated where « is a trainable scalar function encoding the similarity between the two inputs. A

shared similarity matrix S € RN XM is calculated between the passage and question

embeddings such that Spm indicates the similarity between the n-th passage word and the m-th



w(s) € RS"

question word, where function « is defined below with being a trainable weight

vector.

u?) —wg;w)[ Poul sub ou?)
_ P Q

Spm = aul ,u? ) € R

(U,

Passage-to-question attention is then calculated as follows

u$ = Z softmaz(S,.), u?,

Followed by question-to-passage attention

1;51 = Z softmaz(max.(S)), u’

n

Our attention layer output is then computed by combining passage embeddings and attention
vectors as follows

b= [uP;{L\é;uP@sz\é;uP@ﬁ] = RBERN

34 Modeling layer

For the baseline model, the output of the attention layer b is fed through a fully connected layer
with a ReLU non-linearity to produce the modeling layer output [.

li = ReLU (Wpcb; + vpc) € RW*N

3.4.1 BiDAF modeling layer

Experiments that employed the BiDAF attention layer were always coupled with the following
modeling layer. The output of the attention layer is fed through two layers of a bidirectional LSTM

resulting in a matrix [ € RN

| = BiLSTM;_j4yer(b) € RN
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Figure 1: Baseline with BiDAF attention and modeling layers[8]



3.5 Output layer

The logits representing the index of the answer start word in the passage and the end word index,
are by passing the output of the modeling layer [ through separate fully connected layers with a
ReLU activation function. The corresponding probability distributions for start and end positions
are generated by passing the end and start logits through a softmax function.

i

lOg’l:tSsmrt = ReLU<Wsta7'tli + Ustart) vz S {17 ) TL}

Pt = softmaz(logits™*") € R™

. d d
(l 0gits™* and P are computed equivalently)

4 Training details

The following configurations were run for fifteen thousand iterations each.

Baseline

Baseline with Luong attention

Baseline with Luong attention and BiDAF modeling
Baseline with BiDAF attention and modeling layer

Other than these layer configuration differences, all other factors were held constant.
300-dimensional GloVe vectors trained on a 6 billion token corpus were used. Adam optimizer
was used with a learning rate of 0.001. Dropout was applied to all RNN cells at a rate of 0.2.
Padding and clipping of questions and passages was implemented to achieve uniform length
inputs. The maximum question and passage lengths were set to 30 and 600 respectively in all
training runs reported. Out of vocabulary words—those not found among the word vector set-were
handled by setting to zeros. A hidden layer size of 100 and a minibatch size of 40 was used in all
cases.

5 Results

All model variants were run for a minimum of fifteen thousand training iterations (6 epochs) each.
All models were run on an NVIDIA Tesla M60 GPU. The baseline model trained the fastest
approximately 0.9 seconds per iteration (3.75 hours to train), followed by the Luong Attention
model at 3.5 seconds (15.5 hours), then the BiDAF attention model at 3.9 seconds per iteration (16
hours to train), then the model with Luong attention and the BIDAF modeling layer at 5.5 seconds
per iteration (23 hours to train). Figure 1 shows the F1 performance of the variants compared
against that of the baseline. The baseline model scored a peak dev set F1 score of around 0.39 by
the end of 6 epochs, while the addition of Luong attention resulted in a peak score of 0.61. Adding
the BiDAF modeling layer bumped the peak score to 0.65, while the model with BiDAF attention
and modeling scored the most highly at 0.71. The corresponding exact match scores reached 0.29,
0.46, 0.49 and 0.55 respectively.
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Figure 2: F1 and EM performance comparison

51 Error analysis

The accuracy gains realized by the attention mechanisms introduced can be studied in terms of the
questions consistently answered incorrectly by the baseline model but answered correctly by the
modified models. In doing this analysis questions were grouped into six categories with the

possibility of category overlap.

o  Unknown question words were defined as questions where greater than 10% of the tokens

in the question were unknown.

o  Start, end mismatches were defined as any prediction where the start token came after the
predicted end token or where the end token was predicted to be more than 20 words in

front of the start token. Long answers

Long answer questions were those with answers with four or more words
Long passage questions involved passages with 150 words or more
Short passage questions had passages under 150 words

Imprecise boundary questions are those predicted partially correctly
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Figure 3: EM gains by question category relative to baseline

The results of this analysis are displayed in figure 3 where the relative occurrence of each question
category is normalized to display only the ratio of improvement of the variant models against the
baseline. While all categories show improvement, there appear to be modest gains in question with
long answers and a greater than average reduction in the occurrence of start, end mismatches.



5.1.1 Long Answers

Investigating the long answer question category further shows below average exact match scoring
with the BiDAF model only achieving 0.45 versus an average of 0.55. Examining individual
question-answer pairings yields examples such as displayed in table 2 where seemingly correct
answers are scoring poorly as the result of verbose human answers. Further analysis revealed that
the ratio of partially correct answers to exact matches in this question category to be one and half
times the average indicating that the difficulty in improving the success in this category could be
in part due to verbose human answers rather than a model limitation specific to answer length.

Table 2: Example long answer question

... Newton was limited by Denver's defense, which sacked him
seven times and forced him into three turnovers, including a
fumble which they recovered for a touchdown...

Context

Question Who was limited by Denver's defense?
Answer Newton was limited by Denver's defense
Prediction | Newton

Models All models

5.1.2  Start, end mismatch

Interestingly, a large degree of the gains in F1 and EM accuracy achieved by the improved models
were attributable to improvements in this area. Such errors account for around 30% of the baseline
errors, while only 15% of the model with BiDAF attention (with an absolute improvement of
almost four times). Table 3 shows an example of a question answered incorrectly by the baseline
model but correctly by the variants. Given this improvement occurs without a specific mechanism
that feeds information about the start token prediction to the end token predictor, it is worth
thinking about the mathematical implications of improving the accuracy of two independent
predictions. For instance, improving the single token prediction accuracy from 0.5 to 0.75 (an
improvement ratio of 1:1.5) would result in a ratio of improvement of 1:2.25 (the square of the
previous ratio). As such, it may be the case that single token prediction improvement among this
group of previously incorrectly answered questions goes a long way to explaining the outsized
degree of improvement.

Table 3: Example start, end mismatch question

... encompasses six libraries that contain a total of 9.8 million
volumes ... the John Crerar Library contains more than 1.3
million volumes in the biological , medical and physical sciences
and collections in general science and the philosophy and history
of science ...

Context

Question How many volumes does the John Crerar Library roughly hold?

Answer more than 1.3 million
Prediction | <null> start: “more”, end: “million” (first occurrence)
Models Incorrect: baseline, correct: all variants

5.1.3  Answer overlap

A final piece of error analysis involves looking at the overlap between questions answered



correctly by the baseline and those answered correctly by the variants. In figure 4, questions
answered correctly by baseline but incorrectly by the variants are represented in the upper-middle
section labeled degrades baseline. While the ratio of such questions is low, it is far from the case
that all questions answered correctly by the baseline were correctly answered the variants. Such a
result reiterates the non-deterministic nature of such models along with the fact that changes that
improving the overall accuracy are not necessarily done so by incrementally reducing the set of
questions answered incorrectly.
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Incorrect [ Degrades baseline [l Improves baseline [l Correct Incorrect M Degrades baseline W Improves baseline M Correct
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Figure 4: improvement vs. degradation of baseline by question category

6 Conclusion

Focusing on the attention layer while keeping all other aspects of the model implementation
constant proved useful in deepening my understanding the importance of this layer to the overall
architecture. While a mechanism that can learn a focused representation of an input and output
sequence pairing on a per input word basis is both intuitive and effective in practice, the study of
variation among such mechanisms requires close analysis of the implementation details of each.
Not only is this useful in the pursuit of practical implementations of such tools, but the greater the
understanding, the more rationally future design improvements may be made.
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