CS224N Final Project SQUAD Challenge

Saahil Agrawal Nicholas Johnson
Stanford University Stanford University
saahil@stanford.edu nickj@stanford.edu
Abstract

There has been significant progress on applying end-to end neural network based
models for solving question answering tasks. While there have been several tech-
niques that have been developed and tried, attention remains the common build-
ing block across most of these models. In this report we have applied BiDaff,
Bi-directional attention flow, with a modified loss function that conditions end
prediction on start prediction for the machine comprehension task of question-
answering on SQuAD[1].

1 Introduction

Machine comprehension is a challenging task because it requires machines to do several complex
tasks simultaneously like coreference resolution, commonsense reasoning, causal relations, and
spatio-temporal relations[5]. The SQuAD dataset is an open source research dataset for machine
comprehension that has invoked the interest of several academic and industrial researches alike. It is
a highly respected test of measuring the ability of machines in comparison to humans on complicated
intellectual tasks. It is an active area of research .

In this paper we introduce a modified loss function, customized specifically to the task of question-
answering, where the answer is a contiguous subset of the context. The idea originates from a
construction that the end prediction position has to be conditioned on the start position. While dif-
ferent researchers have implemented it differently, we decided to leverage the existing context mask
and the fact that start position is predicted before the end position. In our implementation we have
defined a loss function built over the existing cross entropy loss function by leveraging it’s certain
characteristics. There are different types of attention mechanisms, first where the attention vector
has a temporal dependence on the previous attention vector, second spatial where either context
is summarized to a reduced vector, capturing relevance basis the attention weights. Bi-directional
attention remains to be one of the better performers on this dataset and hence we have tried to im-
plement the same. Other attention mechanisms like LSTM-match [2] are different mathematical
variations of the same idea.

2 Related Work

We looked at the approaches taken by 3 of the top performing single models [2, 3, 4]. End to end
deep neural networks integrating LSTMs currently dominate the top of the charts for the SQUAD
challenge. All look to use multiple attention matrices in order to build relationships and structures
between question and context. Ultimately, we chose to follow the direction of Bi-Directional Atten-
tion flow because top performing groups in this course implemented it last year. Additionally, they
included convolutional neural networks which was academically interesting for our group. More
specifics on parallels between our approach and these groups work are detailed in the rest of the

paper.

"https://rajpurkar.github.io/SQuAD-explorer

3 Approach

3.1 BiDaff Implementation

As our personal baseline, the first modification implemented on the course provided baseline
was reimplementing the BiDaff. The intuitive idea behind is the way humans solve prara-
graph/comprehension reading questions. Most of us first read the paragraph, then the question, and
then go back to paragraph to see which part of the context is relevant to the question we just read.
But in doing so, while reading the question, we also use the subconscious memory to identify rela-
tionships between context, question and which part of the context you want search. The bidirectional
attention flow in some ways simulates this process for the machines. This can be mathematically
expressed as follows. Assume we have context hidden states c1, ...,cy € R*" and question hidden
states q1, ..., qur € R*". We compute the similarity matrix S € RV *M | which contains a similarity
score S,; for each pair (c;, ¢;) of context and question hidden states. The similarity matrix defined
such that,

Sij = Waimlciigj;cioqj] €R

Here, c¢;o0q; 1isanelement wise product and wgip, € R6h isa weight vector.

The dot product with weight vector allows us to have flexibility in the way we want to measure
similarity between two word vectors. Since, both context and question are of different lengths,
a bunch of matrix operations have to be applied in order to calculate the similarity matrix in a
memory efficient way. Next, we perform Context-to-Question (C2Q) Attention. We take the row-
wise softmax of S to obtain attention distributions c;, which can be though of as the similarity
between context token i and question token j. We then scale each question token with it’s similarity
score with i’th context token and take the sum of these two to form a context aware representation
of the question.

In Question to Context (Q2C), here we find for every context word what is the corresponding ques-
tion word with which it has maximum similarity. We take this probability/similarity and define a
single vector that is a sum of the context vectors weighted by the above probabilities. The mathe-
matical expression is:

mi:maXSijGR V i€ [1,2,,N]
J

B = softmaz(m) € RN
N
c Zﬁici

All the above vectors are combined along with interactions of attention vectors with context vectors
into the blended layer that goes as input to the modeling layer. The modeling layer then passes the
input vector to two bi-directional LSTM and concatenates the output vector with the input which
is used for start position prediction. Similarly for end the output of second layer is passed through
another layer before being concatenated and to be used for prediction.

3.2 Modifications

To make a full Bidaff model, we added the character embedding layer and a highway network
to incorporate the character embedding with the word vectors[6, 7]. In order to evaluate unique
word vectors for words out of our GLOVE vocabulary we followed the method outlined in [6]. A
trainable character embedding was used to map words into R™d where n is length of word and
d is the dimensionality of the character embeddings. In order to reduce this large space into a
reasonable word embedding convolutions across the characters in a specific word were performed.
These convolutions were then max pooled to generate a single word feature. Therefore the number
of convolutional filters defined the dimensionality of the word embedding derived from characters.
The highway network simply acts as a fully connected layer that determines how to combine the
word and character embedding.

3.2.1 Self Attention

In continuation with the intuition for Bi-directional attention, when we search for answer in the text
we also try to use our learned information about the relationships between the context words to
select/eliminate certain possibilities. With this logic we intended to implement a self attention layer,
which is a variant of the one published in [2]. Here, W1& W2 are weight matrices with shapes
2h * | where [is a hyper-parameter. Similarly v is a vector of size R! The mathematical expressions
are given by -

e} vTtanh(Wic; + Wac;)
o' = softmaz(e’) € R

N
i_ i
a—g a;c;
i

The output of this layer is then encoded using a bi-directional RNN-LSTM and the output vector is
then concatenated to the blended input vector.

3.2.2 Loss Function Modification

Cross entropy loss is very popular because it is fast to compute and provides nice derivatives for
back propagation. However as previously noted cross entropy loss on the true start and end position
of the answer with the context isn’t a perfect representative of our true evaluation metrics [3]. When
we were evaluating our baseline BiDaff implementation we noted that 5% of our answers predicted
a start position that was located after our predicted end location. This solution pair is by default
invalid. The obvious solution was to impose a hard constraint that the end location be after the
start location. From the BiDaff implementation the end position is already conditioned upon the
start position prediction, so this would more explicitly define that relation. We implemented this by
creating a sub-sampling of the context mask that would constrain the start and end positions from
which to evaluate the end prediction. However; when we began to test this we would see giant (e3°)
losses. After some time debugging, it was discovered that this giant loss occurred when the predicted
start position was after the true end position so the cross entropy was capturing the value of the mask
we applied. This led to a consideration of what information was being imputed to the model by
taking the loss as the sum of the cross entropy loss of the start and end true positions. Implicitly this
is stating that both losses are equally as valuable. However as we stated and demonstrated this isn’t
true. When the start position is after the true end position there is no change for positive F1 or EM,
ignoring repeated phrases. Additionally, reiterating if the predicted end is before predicted start the
loss also doesn’t make sense. Therefore, we looked to modify this loss function to better represent
our desire, similar in motivation to [3]. We consider two modifications in the same direction.

N
1
Lstart (0) = _N Z lo.g(pzfzamrfnlei) (1)
=1
1 N
LEﬂd(Q) = _N Z Ailog(pifzamr;)lei) + (1 - Ai)log(ngflnplei) (2)
1=1
)< ;
A = {O argmaz(Dsample;) < end; 3)
1 ow.
1 N
Lstart (0) = _N Z lo.g(pzfzamrfnlei) (4)
=1
N N
A star 1= en
LEﬂd(Q) — _N Z log(psfzm;)lei) - (N) Zlog(psa;lnplei) (5)
=1 =1
N {O Jis.t.argmaz(Psampie;) < end; ©)
1 o.w.

One of the modified loss functions acts on the entire batch uniformly and the other acts on specific
samples from the batch. From a practical standpoint the batch version should allow for more efficient
back propagation and ensure the auto back propagation is only training the end predictions when
the start predictions are predicting valid start points. We have defined our A in a simple way that
imputes knowledges that is application specific to the output. Presumably there are a variety of other
functional definitions of lambda that could be explore to better relate the interplay between the loss
due to the start and end position predictions. For lambda € [0, 1] this could be interpreted as the
confidence in the end prediction conditioned upon the start prediction, outside of this range a more
clever interpretation would have to be imagined.

4 Experiments

4.1 Delineate

30000
16000
14000
20000 12000
10000
8000
10000 6000
4000

5000
l 2000
0

||H|
0 TR
0-100 100 -200 200 -400 >400 1 4 7 101316 1922 2528 31 34 38

25000

15000

(a) Distribution of context length (b) Distribution of answer span

Figure 1: Exploratory statistics of inputs to initialize hyperparameters

The experiments were designed and structured in a staggered fashion such that we were inherently
able to conduct an ablation study of our model. The first improvement we made was by replacing
the existing attention layer in the baseline model with a bidirectional attention network. We also
modified the modeling layer in our first experiment. While we already anticipated that character
embedding using CNN would not add a lot of improvement to the model, we implemented the
model with character embedding with and without the highway network. As anticipated the dev
f1 score in all three cases was almost the same in the range of 66.5 - 68. However we observed
we observed the Highway network did give some more explanatory power to our model and hence
we decided to keep it in our future model. With our improved understanding of loss function and
model prediction we then defined two new models, one with batch wise modified loss function and
other with element wise modified loss function. As expected and observed in figure 4 this helped us
eliminate all cases where the end and start positions were swapped. This also improved the overall
model performance. As a parallel though, we also experimented with self attention combined with
bidirectional attention flow. This increases the memory requirements of the model significantly and
hence we had to considerably reduce the batch size to 20. The model was also extremely slow
to train. Because of the time and resource constraints we decided to not combine this with other
improvements.

4.1.1 Bi-Directional Attention

Table 1: Model Params

PARAM VALUE

GLOVE Dimension 200
Hidden Layer Size 200

Context Length 400
Question Length 30
Batch Size 50

The model was run with architecture as defined by table 1. Context length of 400 was selected as
there are negligible contexts with length more than 400 (refer figure 1a). The model was run for both
100 and 200 glove vector size and 200 gave better performance than 100 as expected, although not
significant. Hence, in the subsequent experiments the glove size was kept constant because of the
memory constraints of GPUs and the added complexity of other layers. The dropout rate, learning
rate and gradient clipping limit were left at default of .15, .001 and 5 respectively.

4.1.2 Full BiDaff

Table 2: Model Params

PARAM VALUE
GLOVE Dimension 100
Character Filter Number 100
Character Filter Width 5
Character Embedding Size 20
Max Word Length 15

The complete BiDaff with character embedding and highway network was implemented with ar-
chitecture defined by the hyperparameters defined in table 2. The network was tested with both
Ada Delta[4] as well as Adam optimizer. Ada Delta is slower than Adam and did not lead into any
improvement and hence we selected Adam Optimizer for future tests. Character embedding size
was kept small since a single alphabet has very little meaning and hence it is better to project in a
much lower dimensional space then the word vector. The max word length was selected to be 15 as
more than 90% of the words were observed to have less than 15 characters in them. The hyperpa-
rameters used for this model were slightly modified to learning rate of 0.5, dropout rate of 0.2, and
max gradient norm to be 10.

4.1.3 Full BiDaff Sample Loss Modification

Start End location logits
A
i r
Pi P2 P3 Ps Ps Pes P7 -. P3 Ps Ps Ps Py

softmax softmax

|

J9Ae| indinQ

> Bi-LSTM 3
=
g — Bi-LSTM 2
2 t
3 Bi-LSTM 1

B i

Bi-Directional Attention

f

Glvoe

char
CNN

Figure 2: Model architecture schematic with masked end prediction

This corresponds to the first loss function defined in 3.2.2. All model parameters were retained. As
has been described earlier, we modified the loss function in the Full BiDaff model. Our technique
and works and our intuition is validated as our new model has 0% invalid answer as shown in figure
5. Refer to the figure 2 for schematic of model architecture.

4.1.4 Full BiDaff Batch Loss Modification

We also tried our model with the batch wise loss function as defined in 3.2.2. This model was
extremely slow to train. It is expected since it will first train only on start prediction until the start
is not predicted before the true end. Only after this is achieved 100% in a batch it starts training for
th end prediction for that batch. As you would observe in figure it shows an interesting step-wise
improvement in f1 score.

We took a conscious call of experimenting with different types of architectures and analyze their
performance rather than improving the performance of the architecture using hyperparameter tuning
or ensemble of different models.

Results Table

Table 3: Model Performance on Dev Leaderboard

Model F1 EM
Baseline 43.82 34.72
Bidirectional attention layer 72.21 61.50
BiDaff with self-attention 7235 6191
Full BiDaff with Highway 73.50 63.55
Full BiDaff with Element wise loss function 75.01 65.13

4.2 Statistics/Visualizations

We observe in figure 3 that the model under-performs on Why questions. We also observe in figure
4 that, irrespective of the modifications the model gets a 0 score on about 20% examples. The above
two results indicate that the model is not complex enough to understand intricate relationships to
answer why questions and also identify the answer locations.

90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

Where

Why Who What When
m%Number mBiDaff F1 = CNN+Mask F1

How

(a) F1 performance

80%
70%
60%
50%
40%
30%
20%
10%

0%

Where Why
= %Number

Who What When
=BiDaffEM = CNN+Mask EM

How

(b) EM performance

Figure 3: performance of BIDAF and Full Bidaff with modified loss for different questions types.

qseN
swalg

jepig

0%

5%

10%

15%

20%

Figure 4: Percentage of answers where F1 is O

Predict End before Start
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

Bidaf Element Mask

Figure 5: Percentage of end predictions before the start predictions

dev/F1 dev/loss
5.50 I Modified Mask
0.600
Simple BiDaff,
4.50
0400
0.200 280
0.00 2.50
0000 1000k 20.00k 3000k 40.00k 0000 1000k 2000k 3000k 40.00k

Figure 6: Dev F1 scores and loss respectively for

5 Conclusions

Our analysis of the different models that we have experimented with suggests that attention as a
technique definitely helps improve performance at the task of machine comprehension. However,
it would be interesting to see how much of an effect does complicated attention network have as
compared to just having a basic attention layer with many more Bi-directional GRU/LSTM layers.
It is extremely important to condition the prediction of end location prediction on start location.
There are several ways to do it, and we have found a simple yet elegant solution which definitely
applies very well to this particular task. It is evident that char embedding would be helpful only in
the case where we have too many out of vocabulary words or hyphenated words in the text which
is rarely the case. Even though the SQuAD challenge is a fairly new challenge, it is surprising to
see how quickly we have been able to develop techniques to perform at an acceptable level. It is
both astonishing and exciting that machines come close to the human performance in such complex
tasks.

6 Future Work

The first thing we would want to do is to extend the modification of our loss function so that we cover
the second extreme case where the end is predicted before the true start. This along with the previous
modification should considerably improve the model f1 score. We believe that the existing model
can definitely be improved upon by fine tuning the hyperparameters and adding more layers to the
network. An interesting analysis would also be to combine the self attention with BiDaff and the new
loss function to see how the whole system works in tandem. As we see that attention has a significant
role to play in the performance of our model, it would be interesting to see how a Transformer model
[8] performs on this dataset. Also, we observe that the model has variable performance for different
types of questions and hence, some additions like the indication of question category, count of match
of question in context etc. can be useful additions to the word vector before the output layer.

Acknowledgments

We would like to thank Microsoft for donating cloud credits that facilitated the training of all of our
models. We would like to thank the CS224N course staff for their help at office hours, their prompt
responses amongst all of the struggles with CodaLab and ultimately for the extension in the deadline
which allowed for most of our exploratory work in the loss function. Finally, we would like to thank
everyone in the course who contributed to the discussions on piazza as related to Bidaff.

References

[1] Pranav Rajpurkar et al. SQuAD: 100,000+ Questions for Machine Comprehension of Text.

[2] Microsoft Research Asia R-NET: Machine Reading Comprehension With Self-Matching Net-
works

[3] Minghao Hu et al Reinforced Mnemonic Reader for Machine Comprehension
[4] Minjoon Seo et al. BiDirectional Attention Flow For Machine Comprehension

[5] S. Sugawara and A. Aizawa An analysis of prerequisite skills for reading comprehension,
EMNLP 2016, p. 1, 2016

[6] Rupesh Kumar Srivastava et al Highway Networks
[7] Yoon Kim et al Character-Aware Neural Language Models
[8] Ashish Vaswani et al Attention Is All You Need

