GE-BiDAF: A Question Answering model for SQuAD

Binbin Xiong Minfa Wang
Stanford University Stanford University
bxiong@stanford.edu minfa@stanford.edu
Abstract

In this project, we learned from several state-of-art Question Answering (QA)
models and proposed Gated Extension of Bi-Directional Flow (GE-BiDAF)
model, a novel attention based end-to-end neural network for QA. On the SQuAD
dataset!, our single model achieved 76.6 F1 score and 66.4 EM score on dev set,
and the ensembled model achieved 78.3 F1 score and 68.6 EM score on dev set
and 79.7 F1 score and 70.3 EM score on test set.

1 Introduction

Recent years, question answering systems has gained increasing popularity due to its thrive in appli-
cation and boost to academic researches. A question answer system is a system designed to answer
questions posed in natural languages. Among several types of such systems, one special type is
that the answer is a segment of text from the corresponding reading passage. In such case, given a
context and question, the system highlights a span within the context as the answer to the question.
SQuADI1] is such a reading comprehension dataset which consists of 100,000+ questions posed by
crowd-workers on a set of Wikipedia articles. Until early 2018, the state of art model has already
surpassed human level performances.

In this project, we experimented and analyzed with what we learned from some of the top performing
models, and proposed our own constructed model. The rest of the paper is organized as follow:
Section 2 introduces related work and common technologies used in state of art models, section 3
presents our model methodology and implementation details. In section 4 we present experimental
results and model analysis. We then conclude our proposal in section 5 and discussed some future
works.

2 Background

One popular problem definition used by many state of art models[2,3,4] is to predict the start word
and end word position for the given passage and question, this can be formulated as minimizing loss
over index*t*" and index®™?.

In BiDAF[2], they proposed a hierarchical multi-stage architecture for modeling the representa-
tions of the context paragraph at different levels of granularity. In R-NET[3], they leveraged gated
attention-based recurrent networks to obtain question-aware passage representation then refine it us-
ing self-matching attention mechanism. In Dynamic CoAttention Networks[4], they generated both
question-aware passage and passage-aware question representation, then used dynamic pointing de-
coder to produce answer span.

In general, these models can be decomposed into four layers, embedding layer, attention (encoding)
layer, modeling layer and output layer. For the embedding layer, words or even characters will be
mapped into embedded vectors, then in encoding layer, context passage ad questions will be encoded

'http://web.stanford.edu/class/cs224n/project.html

with various of attention calculation modules. The general rule of thumb here is to encode questions
information into contexts and contexts information into questions. Later, in the modeling layer,
these encodings will be further fused or connected to let them interact with each other. Afterwards,
they will be put to the final output layer to predict the start and end index of the answer span.

3 Modeling

Inspired by previous works and BiDAF[2] in particular, we propose an end to end model that is
illustrated in figure 1. In a nutshell, it uses the original BiDAF architecture as the skeleton and built
several extensions on top.

We chose BiDAF model as our improved baseline model because of its modularity and the clear
intent and intuitive interpretation for every single layer in the architecture. These two features made
the model very extensible.

In the figure, we highlighted our extensions to the BiDAF model in blue background. The FC +
Batch Norm unit is used to condense the information into lower dimensions. The CoAttention unit
is used to enhance query-aware context representations. The Self-Attention unit is used to capture
more interactions between context words. The gate is used to re-scale context representations based
on its relevance to the question.

In the following sections, we will elaborate more about each layer and the rationale behind the
design.

Start End

Output Layer GRU + Softmax

[gate] [Concat + Multiply]

Modeling Layer | [eRU |[GRU |

1\
Self Attention

FC + Batch
Norm

Co-Attention

Glove | [CharCNN| [Glove | [CharCNN |

Question Context

Embedding Layer [

Figure 1: Architecture Overview.

3.1 Embedding Layer

The embedding layer is primarily responsible for constructing word level vector representations for
all words in context and question.

In this layer, we use both word embedding and character level embedding, hoping that character
level embedding can help with out-of-vocabulary words during testing. The word embedding is
pre-trained with GloVe[10] with dimension 100 while the character level embedding is trained from

scratch using CNN[S5] . Note that since our training data is limited, to avoid over fitting, we keep the
word embedding fixed. As can be seen in section 4, character level embedding indeed helps with
the model performance.

3.2 Attention Layer

The attention layer is primarily responsible for constructing query-aware context representations.

In our model, we first applied bi-directional attention following instructions from BiDAF[2]. It is
a very efficient approach to encode question information into the context. The BiDAF output b; is
computed as follow:

T . g
Sij = wsim[civ qjv C; 0 q]]
M

¢ = Z softmaz(S;..);q;

F=

N
q= Z softmaz(maz;(Si;))ici
i=1
b; = [e;;€55¢; 0 €;5¢5 0 q]

Note that b; has a very large dimension of 8 x hidden_size. It brings 3 problems to the subsequent
RNN layer: 1) large number of parameters, 2) dimension imbalance between input and hidden
vectors and 3) slow training speed. So we inserted a fully connected layer with batch norm after this
layer with dimension equals 2 * hidden_size. It effectively addresses problems with memory and
speed, and based on our isolated experiment, the model performance remains identical. The output
of this layer is b;:

b; = BatchNorm(FCgrery(b;))

In parallel to the BiDAF branch, we created a co-attention layer[4] to extract more query-aware
context information.

The reason we chose co-attention here is because 1) it has proven to be an efficient learning structure
for similar tasks[4], 2) it only contains a relatively small number of trainable parameters hence it
would not cause too much burden to the system, and 3) its structure is very different from the BiDAF
attention structure so it might be able to learn some distinct language patterns.

For simplicity we did not include the sentinel vector proposed from the original CoAttention pa-
per[4]. The output s; is:

R
L;; = ¢; q;

M
a;, = Z softmax(Li):)jq;-
j=1

N
b; = Z softmaz(L. ;)c;

=1
M

5= aib;
j=1

The output of the whole attention layer is simply a concatenation of f)z ands;: a; = [f)z, Si]

3.3 Modeling Layer

The modeling layer is primarily responsible for capturing the interactions between context words.

First, we followed the advice from the BIDAF model to create a GRU layer suggested by the BIDAF
model:
r; = biGRU (a;)

In parallel, we added a self-attention layer with GRU to capture more sophisticated interactions. The
self-attention is implemented using the scaled multiplicative attention[8]. It has all the nice features
from the original multiplicative attention[7] and is more robust on larger dimensions. The output of
this layer is e:

Si; = aiW*a;
ai = softmaz(S;./Daim)i

M
€ = Z afai

We created another gated GRU layer to the concatenation of r; and €; to enable more complex
interactions among context words. The gate is used to determine the importance of words to answer
the question. The output o;:

g = FCsigmoid(ri)
0; =g, 0 T;

3.4 Output Layer

The output layer is responsible for making the decision of the start and end position of the answer
in context.

Similar to BiDAF[2], we first built residual connection for lN)Z and s;, and then simply use a softmax
layer for making start predictions, and GRU plus softmax layer for making end predictions.

Although there is no explicit dependency between start and end predictions, we believe the GRU
could resolve a lot of this information implicitly. The formula to make the predictions are:

0, = [bi;s;; 0]

start

p;*"" = softmaz(FCRreru(0;))

end __

pi"¢ = softmax(FCRrerv(0:))

3.5 Model Ensemble

Based on our single model, we trained it multiple times and combine the output of all of them to
produce the final output. We have tested with several different combine schemes, one is to sum up
the probability directly while the other is to use weighted sum, where the weight is the F1 score

on dev set for each of the model. Further more, we implemented beam search during testing: in-

2 : start/end i start/end
stead of using indext*"t/¢"® = argmax?_, (p; /), we keep top beam_search_size p; /

predictions as candidates and find indez5to"t/end beam.search.size (pstart y pend)

= argmax;5Ty p;eT * p§

3.6 Other design choices

We chose GRU as the basic RNN cell in the architecture, because it shows comparable performance
as LSTM while having much fewer parameters.

In the literature, sometimes people might put RNN cell as part of the attention layer. In this article,
we separate out RNN and attention for consistency and modularity.

4 Results and Analysis

In this section, we present our model settings, list the performances of all the models we have tried
and also analyze some error examples for our best performing model.

4.1 Setup

We developed GE-BiDAF in incremental steps. Each time we add one module, validate its perfor-
mance, and then re-iterate. In order to better compare models, we explored a set of fixed parameters
that are applicable to all model variants we experimented with.

e Adam optimizer with learning rate: 0.001. In practice, because Adam Optimizer has the
ability to automatically adjust the learning rate, the model is able to converge reasonably
fast in a relatively wide range of learning rate. This default learning rate usually allows the
model to reach close-to-optimal performance in a few thousand iterations.

e Batch size: 100. A smaller batch size will create more stochastic behavior and cause
model to converge slower. A larger batch size will lead t o out-of-memory error for large
and complex models. A batch size of 100 is a sweet spot we found appropriate in our
experiment.

e Hidden size: 100. A smaller hidden size will restrain the model capacity. A larger hidden
size will cause out-of-memory error and make and model more prone to over-fitting. For
reference, r-net used a hidden size of 75 and it managed to get competitive performance.

e Context length: 400. As shown in Figure 2. Based on the training set, this context length
will drop 0.19% of examples, but speed up the training process noticeably.

e Question length: 27. As shown in Figure 2. Based on the training set, this question length
will drop 0.27% of examples, but speed up the training process noticeably.

e Smart span selection with beam search. In practice we found that beam_search_size=5
is mostly useful. Further more, as suggested by [6], during beam search, we require 0 <
index®™ — index*'*"* < 15 since the naive model is trained to predict start and end
positions independently so it is even possible to have a predicted end index smaller than
the start index. Although in the training set there are 2.3% answers that are longer than 15,
in practice we found setting threshold to 15 gives the best boost, which is about 0.5 point
on dev set. Adding this requirement can help especially when the answer appears more
than once in the context, for e.g., the answer is a single word.

Figure 2: Length distribution in training set. From left to right: answer, question, context

4.2 Model Iteration

As listed in table 1 and 2, started from the given code as baseline, we iteratively added modules to
our model, and only kept the ones that work well. We discovered significant boost effect of beam
search, so we included it in all BiDAF variants. The additions of batch norm, co-attention and self-
attention all contributed to small fractions of the model performance. The final gating mechanism
contributes to most of the improvements on the basis of BiDAF.

Dev Test
Model F1 EM | F1 EM

GE-BiDAF(single) 76.6 664 | - -
GE-BiDAF(ensembled) | 783 68.6 | 79.7 70.3
BiDAF(single) 773 677 | 77.3 68.0
BiDAF(ensembled) 80.7 72.6 | 81.1 733
DCN(single) 654 756 | 662 759
DCN(ensembled) 703 794 | 71.2 804
RNet(Jan, 2018) - - 82.6 88.4

Table 1: Performance comparison with other models

4.3 Error Analysis

Model” DevF1 | DevEM
BL 38.0 26.4
BL+CNN 41.2 31.2
BL+CNN+BS 45.1 36.9
BiDAF-CNN+BN 74.0 63.5
BiDAF+CA+SA+BN | 74.7 64.0
GE-BiDAF(single) 76.6 66.4

Table 2: Performance comparison be-

tween ablation models

“BL: baseline, CNN: character level
CNN embedding, BS: beam search, CA: co-
attention, SA: self attention, BN: batch norm

The questions in the SQuAD dataset could be grouped into the following categories based on the type
of questions: when, what, who, where, how, and others. In figure 3 we illustrated holistically how
well does the model behave on different types of questions respectively by comparing the question

length with the ground truth data.

It appears the model performs well for when, and who, question types, but shows noticeable head-
room for what and where question types. We looked into the biggest loss (lowest prediction F1
score) examples under these two categories and summarized the following error patterns. For each
pattern, we also show one example, where the correct answer with highest F1 score is highlighted

in the context.

| What When Who Where How Other

F1 0.751 0.894 0.825 0.758 0.789 0.789
EM 0.641 0.847 0.762 0.650 0.691 0.689
Count | 4763 695 1096 431 1090 2495

Table 3: F1 and EM for different questions

Histogram of "What" ans_len ground truth vs. pred

Histogram of "When" ans _len ground truth vs. pred

Histogram of "Who" ans_len ground truth vs. pred

1400 ground_truth
pred

1200

1000

ground_truth
pred 500

400

300

200

100

ground_truth
pred

2 4 6 8 10

answer_len

Histogram of "Where" ans_len ground truth vs. pred

2

4

6

answer_len

8

Histogram of "How" ans_len ground truth vs. pred

10 2 4

8

Histogram of other ans_len ground truth vs

pred

10

ground_truth
pred

600

500

400

5
g 300

200

ground truth
pred

1000

ground_truth
pred

Figure 3: Histogram of answers length comparison between ground truth and prediction for different

types of questions.

Biased towards preposition words

This is a common pattern mostly seen in where type questions. The learned model tends to give
strong bias for phrases after preposition. As can be seen from the following example, the model is
confused by near which actually tells time, not a location.

Question: Where did Tesla go to feed the pigeons daily?

Context: Near the end of his life, Tesla walked to the park every day to feed the pigeons and even
brought injured ones into his hotel room to nurse back to health.

Prediction: “near the end of his life”

Ambiguous answers

This pattern happens most for what type questions. For some questions, there are more than one
phrase in the context that could be regarded as answer, it’s just the rater’s favor.

Question: What is notable about the Amazon forest when it is seen from space?

Context: Deforestation is considerable, and areas cleared of forest are visible to the naked eye
from outer space.

Prediction: “deforestation”

Incomplete answer phrase

This is another pattern that happens frequently for what type questions. For some of the answers the
model generates are not of complete phrase. Though this type of error mostly won’t hurt F1 much,
they should be relatively easy to fix. Adding POS tag might help deal with this error,

Question: What drives down wages in a job with many workers willing to work a lot?

Context: A job where there are many workers willing to work a large amount of time (high supply)
competing for a job that few require (low demand) will result in a low wage for that job. This is
because competition between workers drives down the wage.

Prediction: “competition between workers drives”

Wrong attention

This error pattern applies to all type of questions. Once the attention is wrong, the prediction is
usually far away from the real answer in context passage.

Question: What is the most important type of Norman art preserved in churches?

Context: In Britain, Norman art primarily survives as stonework or metalwork, such as capitals and
baptismal fonts. In southern Italy, however, Norman artwork survives plentifully in forms strongly
influenced by its Greek, Lombard, and Arab forebears. Of the royal regalia preserved in Palermo,
the crown is Byzantine in style and the coronation cloak is of Arab craftsmanship with Arabic
inscriptions. Many churches preserve sculptured fonts, capitals, and more importantly mosaics,
which were common in Norman Italy and drew heavily on the Greek heritage.

Prediction: “’stonework or metalwork”™

Unable to handle too complex sentences.

This is a common error pattern that applies to all type of questions. Some passage contains too
complex structure that the model seems to be unable to handle. As shown in the following example,
there are multiple person entities and locations appear in the context.

Question: Where did Jebe’s division of Genghis Khan’s army campaign in Khwarezmia?

Context: The Mongol army under Genghis Khan, generals and his sons crossed the Tien Shan
mountains by entering the area controlled by the Khwarezmian Empire. After compiling intelligence
from many sources Genghis Khan carefully prepared his army, which was divided into three groups.

His son Jochi led the first division into the northeast of Khwarezmia. The second division under
Jebe marched secretly to the southeast part of Khwarzemia to form, with the first division, a pincer
attack on Samarkand. The third division under Genghis Khan and Tolui marched to the northwest
and attacked Khwarzemia from that direction.

Prediction: “the northwest”

5 Conclusion And Future Work

In this paper we presented a novel model which leverages multiple attention techniques including
BiDAF, Co-Attention, Self-Attention as well as various tweaks. We showed how we came up with
this model with iterative experimental results, analyzed the best model with examples. Based on our
experiences, we are interested in the following directions in future work.

Explicit dependency between start and end predictions

In R-NET][3] and answer-pointer network[9], they proposed to construct more explicit dependency
between start and end predictions.

During our development, we tried to replace the output layer of the current architecture with the
above convention. We didn’t observe a particular faster convergence in our experiment. One ex-
planation is that we have an additional GRU in the output layer, it’s powerful enough to learn the
implicit dependency of the start prediction indices, and it makes the overall computational graph
simple and easy to optimize.

Despite the fact that it didn’t illustrate immediate gain the overall idea of conditioning end prediction
on the start prediction still appear to be a sounding approach and worth more explorations.

Modeling on specific loss patterns

In the error analysis, we observed that the model performs differently on different types of ques-
tions. We could explore more ideas on learning specific loss patterns for a subset of questions. For
example, our model performs weak for where questions, the answer for such questions usually refers
to locations. Adding NER-LOC feature might help the model to better deal with such quesitons.

Acknowledgments

We would like to thank the instructor and TAs for all the help during the course. It is the tailored
and well designed course material and projects that helped us to learn and reach this far.

6 References
[1] Rajpurkar P, Zhang J, Lopyrev K, et al. Squad: 100,000+ questions for machine comprehension
of text[J]. arXiv preprint arXiv:1606.05250, 2016.

[2] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional atten-
tion flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

[3] Appers in https://www.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf

[4] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604, 2016.

[5] Yoon Kim. Convolutional neural networks for sentence classification. In EMNLP, 2014.

[6] Chen, Dangi, et al. Reading wikipedia to answer open-domain questions. arXiv preprint
arXiv:1704.00051 (2017).

[7] Minh-Thang Luong, Hieu Pham, Christopher D. Manning. Effective Approaches to Attention-
based Neural Machine Translation. arXiv preprint arXiv:1508.04025

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, Illia Polosukhin. Attention Is All You Need. arXiv preprint arXiv:1706.03762

[9] Shuohang Wang and Jing Jiang. Machine comprehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905, 2016b

[10] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vec-
tors for Word Representation.

