Answering Questions with CharCNN and Bi-directional Attention Flow

Cindy Jiang

cindyj@stanford.org

Abstract

The Question Answering (QA) task posed by the SQuAD
dataset involves answering a question by selecting a seg-
ment of the context passage. There are many models devel-
oped to perform this task, but only recently have some mod-
els been able to match the 86.8% F1 score achieved through
human performance. In this paper, we implement compo-
nents of the recent BiDAF model, which includes adding a
character embedding layer, attention flow layer, modeling
layer, and output layer on top of the baseline model.

1. Introduction

We implemented the model proposed by Seo et al.
(2017) [7]. We added the following layers on top of the
baseline implementation: a character-level convolutional
neural network layer (CharCNN), Bidirectional Attention
Flow (BiDAF) layer, modeling layer, and output layer. In
addition to this implementation, we experimented with hy-
perparameters and tuned our model on the training and dev
set while comparing performance to the provided baseline.

2. Dataset

The dataset used is the Stanford Question Answering
Dataset (SQuAD). It is a reading comprehension dataset
consisting of 100,000+ questions corresponding to context
paragraphs, where the answer to the question is a seg-
ment of the context paragraph. The context paragraphs are
from Wikipedia articles and the questions and answers were
crowd-sourced using Amazon Mechanical Turk [4].

3. Model

The model we implemented is based off of the Bi-
directional Attention Flow model introduced in Seo et al.
(2017) [7]. The multiple layers of the model are visualized
in the diagram Figure 1, taken from the reference paper.

The baseline model implementation contained a word
embedding layer, an RNN encoder layer, a basic attention
layer, an output layer and the training layer.

Connie Xiao

coxiao@stanford.org

3.1. Character Embedding Layer

We trained a convolutional neural network using one
layer of convolution and max pooling to obtain character
embeddings on the words from our input questions and con-
texts [7]. This is done by taking the characters in each
word cy, ..., cg, for a word with L characters and represent-
ing those characters with trainable character embeddings
ei1,...,er. Those embeddings go though a CNN that com-
putes hidden states based off a window of character em-
beddings [e;_, ..., €;, ..., €511 for position ¢ and window
size k. Each of the hy,...., Ay hidden states go through
max pooling, which results in the character encoding of a
word. Using a simple CNN for natural language process-
ing tasks have been effective in sentence classification with
little hyperparameter tuning [2]. Further studies have also
demonstrated how character-level convolutional networks
can achieve state-of-the-art results in text classification [1 1]
and other NLP tasks like text generation [3] and part of
speech tagging [6].

3.2. Word Embedding Layer

We used pretrained GloVe word embeddings from the
baseline. These embeddings captured the meaning and con-
text of words within a vector representation.

3.3. RNN Encoder Layer

The input to this layer is the concatenation of word em-
beddings with their corresponding character embeddings
from the previous two layers. The input vectors are fed into
a bi-directional GRU, which outputs forward hidden states
and backward hidden states for both context and query
words. This captures the contextual relationships between
the context words, query words and the nearby words within
the input passages.

3.4. Attention Flow Layer

The hidden states generated from the RNN encoder layer
are used to calculate attention. Attention is an effective
mechanism to improve performance, allowing query words
to focus on certain context words more and vice versa. The
baseline implemented a basic dot-product attention layer
with context-to-query (C2Q) attention, which gives weights

Start End
Dense + Softmax LSTM + Softmax
Output Layer
m, N A - My

7

Modeling Layer
=
Z

91 ()] Or
Attertgor;rFlow Query2Context and Context2Query
Y Attention
h1 h2 hT u1 UJ
Contextual s =
Embed Layer ? 7
Word Embed
h o O & - - -
yer
Character

Embed Layer - - (- - - -

% X2 X3 i G Q
Context Query

Figure 1. Bi-directional Attention Flow model

to how relevant query words are to context words. In
addition, bi-directional attention flow considers query-to-
context (Q2C) attention, which gives weights to how rele-
vant context words are to query words. The implementation
is based off of Seo ef al.’s BiDAF model [7]. At every time
step, we compute these two directions of attention with the
similarity matrix § € RV*M found by taking the product
of every question and context word by pairing and multiply-
ing the whole matrix by a weight vector ws;,, € R4, The
output is not just fixed vector representations of the query
and context; rather, the output is the query-aware represen-
tations of context words. This reduces the informational
bottleneck of trying to encode the full query and context
into a fixed representation. The output of this layer flows
into the modeling layer as an input.

3.5. Modeling Layer

The modeling layer receives the query-aware represen-
tations of context words from the modeling layer and out-
puts a matrix M € R2¥*T_ The modeling layer consists
of two stacked layers of bi-directional RNNs. We used bi-

directional GRUs rather than the bi-directional LSTMs used
by Seo et al. (2017). The output matrix M represents the
context of each word with respect to the whole context pas-
sage and query. The output to this layer flows into the next
layer as an input.

3.6. Output Layer

The output layer receives the contextual representations
of words M with respect to the context passage and query
and outputs the probability distributions for both the start
and the end indices. First, we find the softmax probability
distribution of the start index over the context passage. Then
M is fed into another bi-directional RNN in order to find
the softmax probability distribution of the end index.

3.7. Training Layer

The algorithm used to train the our model is summing the
cross-entropy loss and optimizing with the Adam optimizer,
an extension of stochastic gradient descent. The Adam op-
timization algorithm adds momentum to the standard SGD
to speed up the learning rate and dampen oscillations [5].

The model then finds the output that minimizes the loss to
return as the answer.

3.8. Model Tuning

In addition to modifying the model implementation, we
tested with different hyperparameters as well. This includes
batch size, hidden size of the RNN, maximum lengths based
off of the input data, and the type of complex RNN used.

3.8.1 Lengths

On the development set of our dataset, we generated his-
tograms for context length, question length, and word
length. Informed from the histograms, we set the hyper-
parameter for the maximums of context length to 300, for
question length to 25, and word length (when using Char-
CNN) to 15. This decreased training time.

The context length was chosen jointly because few con-
texts had beyond 300 words 2 and less than 90 percent of an-
swers are located after the 300 word mark 3. The maximum
question length and answer lengths were chosen at a value
that represents more than 90 percent of the dev dataset.

6000

5000 A

4000 A

3000 A

2000 A

1000 A

100 200 300 400 500 600 700

Figure 2. Context Lengths

3500

3000 A

2500 A

2000 A

1500 -

1000 A

500 A

10 15 20 25

Figure 3. Question Lengths

600000 -

500000 -

400000 A

300000 -

200000 -

100000 +

0

T T T

10 15 20 25 30

Figure 4. Word Lengths

3.8.2 Batch Size and Hidden Size

The baseline parameters include batch size 100 and hidden
size 200. The BiDAF implementation by Seo et al. uses
batch size 60 and hidden size 100. However, running with
these parameters significantly decreased performance com-
pared with the baseline parameters.

In addition, we tried to increase batch size to 150 and 120
to increase performance. Although this was feasible using
the baseline model, there was not enough memory for us to
increase batch size for our final model.

3.8.3 Type of RNN

The baseline uses a bi-directional GRU to encode the word
embeddings. We ran it with a bi-directional LSTM as well,
but there was minimal difference with the GRU performing
slightly better as seen in Figure 5. Therefore, we chose to
keep the baseline GRU.

GRU vs. LSTM

50 B GRU
W LsT™

39 1 e

dev F1 dev E/M

Figure 5. Comparison of GRU and LSTM

F1 and E/M for Train

Baseline CharCNN LSTM BiDAF BiDAF and Final Model

CharCNN

Experiment

Figure 6. Training Scores

F1 and E/M for Dev

Baseline CharCNN LSTM BiDAF

BiDAF and Final Model
CharCNN

Experiment

Figure 7. Dev Scores

| Model | dev F1 | dev EM |
Baseline 42.959 | 34.059
CharCNN 42.887 | 33.595
BiDAF 49.117 | 39.073
CharCNN + BiDAF | 51.572 | 41.580
BiDAF + Modeling + | 72.960 | 62.999
Output
CharCNN + BiDAF + | 73.976 | 63.841
Modeling + Output

Table 1. F1/EM scores for various models run on dev set

4. Experiments

In this section, we describe the experiments that were run
during the development of the model. The two evaluation
metrics being used are the F1 and Exact Match (EM) scores.
Exact Match requires the returned answer to be exactly the
same as the ground truth. F1 is less strict and takes the
harmonic mean of the precision and recall, where precision
is the ratio of words correct within the outputted answer and
recall is the ratio of words correct compared to the ground
truth.

Figure 6 shows the F1/EM scores for our models on the

training set. Figure 7 and Table 1 shows the F1/EM scores
for our models when run on the dev set.

After evaluating dev scores locally, we submitted our fi-
nal model (CharCNN + BiDAF + Modeling + Output) to the
CS224N dev leaderboard and test leaderboard. The scores
are displayed in Table 2.

| Evaluation [devFl | devEM |
dev (local) 73.976 | 63.841
dev(leaderboard) | 74.336 | 64.305
test (leaderboard) | 75.158 | 65.184

Table 2. F1/EM scores of final model evaluated on various data
and sources

5. Evaluation

The BiDAF model performs a lot better than the baseline
implementation. Table 3 and Figure 8 shows the percent
increase of each model compared to the baseline scores.

| Model | %A devFl | %A devEM |
CharCNN -0.168 -1.361
BiDAF 14.333 14.722
CharCNN + BiDAF 20.049 22.083
BiDAF + Modeling + 69.833 84.972
Output
CharCNN + BiDAF + 72.199 87.444
Modeling + Output

Table 3. Percent change of F1/EM scores for dev set compared to
the baseline

Percent Change from Baseline

W devFl
W devE/M

Figure 8. Percent change of F1/EM scores for dev set compared to
the baseline

5.1. CharCNN Layer

When CharCNN is added to the baseline with no other
changes, we see that although the training set produces

marginally better results, the dev set performs worse. This
can be seen in the negative dev percent change in Table 3.

However, CharCNN boosts dev set performance when it
is added to the modified implementations. With respect to
the baseline, CharCNN increases F1 by 5.716% and EM by
7.361% when added to the BIDAF model. Similarly, Char-
CNN increases F1 by 2.366% and EM by 2.472% when
added to the BiDAF + Modeling + Output model.

5.2. BiDAF Layer

Changing the basic attention to bi-directional attention
flow improved performance more than CharCNN did. F1
increased by 14.333% and EM increased by 14.722%. Be-
cause of its large improvement, we decided to continue us-
ing BiDAF attention during the subsequent experiments.

5.3. Modeling and Output Layers

Adding the modeling and output layers showed the most
significant improvement during our experiments since it
adds three more layers of RNN to extract the answer from
the context and query representations. This addition im-
proved F1 by around 50-55% and EM by around 65-70%.

5.4. Sample Questions and Answers

Context: to remedy the causes of the fire , changes
were made in the block ii spacecraft and operational pro-
cedures , the most important of which were use of a
nitrogen/oxygen mixture instead of pure oxygen before
and during launch , and removal of flammable cabin and
space suit materials . the block ii design already called for
replacement of the block i _plug-type_ hatch cover with a
quick-release , outward opening door . nasa discontinued
the manned block i program , using the block i spacecraft
only for unmanned saturn v flights . crew members would
also exclusively wear modified , fire-resistant block ii
space suits , and would be designated by the block ii titles
, regardless of whether a Im was present on the flight or
not .

Question: what type of materials inside the cabin were
removed to help prevent more fire hazards in the future ?

| Model | Answer |

CharCNN (end before start)

CharCNN + BiDAF | flammable cabin and space

BiDAF + Modeling + | space suit materials

Output

CharCNN + BiDAF | flammable cabin and space suit

+ Modeling + Output | materials

True Answer flammable cabin and space suit
materials

Table 4. Improvement in question responses

Context:there are infinitely many primes , as demon-
strated by euclid around 300 bc . there is no known sim-
ple formula that separates prime numbers from composite
numbers . however , the distribution of primes , that is to
say , the statistical behaviour of primes in the large , can
be modelled . the first result in that direction is the prime
number theorem , proven at the end of the 19th century
, which says that the probability that a given , randomly
chosen number n is prime is inversely proportional to its
number of digits , or to the logarithm of n .
Question:what theorem states that the probability that a
number n is prime is inversely proportional to its loga-
rithm ?

| Model | Answer |
CharCNN the prime number theorem
CharCNN + BiDAF | n
BiDAF + Modeling + | direction
Output
CharCNN + BiDAF | proven at the end of the 19th
+ Modeling + Output | century
True Answer the prime number theorem

Table 5. Unexpected changes in quality question responses

In Table 4, we can observe improvement qualitatively

after successively adding features to our model. This is
the predicted behavior, where additional features aid the
model’s ability to determine the answer. The lone addi-
tion of CharCNN to the baseline model proves to hinder
the quality of answer. The model is not complex enough
to handle the more detailed character level features and the
consequential overfitting on the training data is indicated in
the model selecting a faulty format of answer to this ques-
tion. The addition of BiDAF improves the model’s ability
to relevantly focus on certain words. By additionally asso-
ciating the query to context, BIDAF captures a subsequence
of the answer. Using BiDAF, modeling, and output also suf-
fers from imprecise answer boundaries. However, with all
implemented features, our model was able to arrive at the
correct answer.
At the same time, additional features can make the quality
of answers worse as demonstrated in Table 5. Adding fea-
tures to the model clouds the model as it selects answers that
are related to syntactic ambiguities in the context paragraph
and question.

6. Conclusion

We implemented the bi-directional attention flow model
proposed by Seo et al (2017) [7]. Beyond the baseline im-
plementation, we implemented additional layers. As input
to the GRU along with word embeddings, we added a char-

acter CNN to represent words with character-level encod-
ings. In addition, we added bi-directional attention flow
so that attention flows both forwards and backwards, and
gets inputted into the next layer. Finally, we stacked more
GRU layers to contextually determine the probability distri-
butions of the start and end indices for the predicted answer.
Together, these modifications significantly improved perfor-
mance from the baseline. Our final dev scores were 63.8%
EM and 84.0% F1. However, there is still much room for
improvement compared to the state-of-the-art models at the
top of the SQuUAD leaderboard (Top EM: 82.849, Top F1:
89.281) and compared to human performance (EM: 82.304,
F1: 91.221).

6.1. Future Work
6.1.1 Hyperparameters

For CharCNN, we used the default values provided. With
additional time, we would tune the character embeddings
size, hidden size, and window size. We also considered
experimenting with different training optimizers, such as
Adadelta or RMSProp, as described by Ruder [5].

6.1.2 Answer Pointer

Our model selected the start and end positions of the an-
swer by taking the largest value in each respective probabil-
ity distribution. In a number of cases, this meant selecting
an end word that preceded the start word. If we prevented
our model from choosing an end position of an answer prior
to the start of the answer, our scores may improve. Further
work on this idea would be to to determine the end predic-
tion with knowledge of the start prediction. This is imple-
mented by Wang et al. (2017) [8].

6.1.3 Error Analysis

We could better understand the faults of our model through
more thorough error analysis in our final model. We could
classify the errors our final model made into categories and
adjust our model to fit the type of error. We could also uti-
lize error categories that have been defined by other works
such as by Seo et al. (2017) [7].

6.1.4 Ensemble

In addition to BiDAF, there are plenty of other models de-
veloped to tackle the Question Answering problem. Many
of the models at the top of the SQuAD leaderboard are en-
semble models, which combines multiple models together.
This is more expensive to run but it boosts performance sig-
nificantly since there are multiple evaluation algorithms be-
ing checked against each other.

References

[1] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, and G. Hu.
Attention-over-attention neural networks for reading com-
prehension. arXiv preprint arXiv:1607.04423, 2016.

[2] Y. Kim. Convolutional neural networks for sentence classifi-
cation. arXiv preprint arXiv:1408.5882,2014. 1

[3] Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-

aware neural language models. In AAAI, pages 2741-2749,

2016. 1

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. Squad:

100,000+ questions for machine comprehension of text.

arXiv preprint arXiv:1606.05250, 2016. 1

[5] S. Ruder. An overview of gradient descent optimization al-
gorithms. arXiv preprint arXiv:1609.04747, 2016. 2, 6

[6] C.D. Santos and B. Zadrozny. Learning character-level rep-

resentations for part-of-speech tagging. In Proceedings of the

31st International Conference on Machine Learning (ICML-

14), pages 1818-1826, 2014. 1

M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidi-

rectional attention flow for machine comprehension. arXiv
preprint arXiv:1611.01603, 2016. 1,2, 5,6
[8] S. Wang and J. Jiang. Machine comprehension using match-
Istm and answer pointer. arXiv preprint arXiv:1608.07905,
2016. 6
[9] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou.
Gated self-matching networks for reading comprehension
and question answering. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), volume 1, pages 189-198, 2017.
[10] C. Xiong, V. Zhong, and R. Socher. ~Dynamic coat-
tention networks for question answering. arXiv preprint
arXiv:1611.01604, 2016.

[11] X. Zhang, J. Zhao, and Y. LeCun. Character-level convolu-
tional networks for text classification. In Advances in neural
information processing systems, pages 649-657, 2015. 1

[4

—

[7

—

