Paying Attention to SQuAD:
Exploring Bidirectional Attention Flow

Heather Blundell Lucy Li
Computer Science Symbolic Systems
Stanford University Stanford University
hrblun@stanford.edu lucy3@stanford.edu
Abstract

With the goal of automated reading comprehension, we apply a neural network with Bidirectional At-
tention Flow (BiDAF) to the Stanford Question Answering Dataset (SQuAD) and achieve F1 and Exact
Match (EM) scores close to the original paper with a single model. We obtain a test F1 score of 76.037
and test EM score of 66.663. Our model includes Character-level CNN embeddings, a Highway Network
layer, a Phrase Embedding layer, a Modeling layer, and smart span selection. We also explored expanding
the model with feature engineering and an Answer Pointer output layer, which did not further improve our
best model. We analyze our model’s performance across categories of contexts, questions, and answers,
and compare baseline attention with BiDAF.

1 Introduction

Reading comprehension for question answering is one of the many goals of natural language processing (NLP). One way
to operationalize this task is to provide a passage and question pair to a machine, which selects an answer as some span in
the passage. Learning to perform well on this task usually requires training on a large dataset, and the Stanford Question
Answering Dataset (SQuAD) was created for this purpose [1]. Many subfields of NLP, including reading comprehension,
originally depended on a heavy use of feature engineering and linguistics, but the past decade has witnessed an increasing
trend towards using deep learning to tackle these problems [2]. In this project, we use the SQuAD dataset to build a
neural network model for reading comprehension. We implemented several previously proposed techniques, including
Bidirectional Attention Flow and Answer Pointer, on top of a basic attention baseline.

2 Related Work

Traditional statistical models used rule-based algorithms and features that combine semantic, frame, and syntactic infor-
mation [3, 4, 5, 6]. A smaller predecessor dataset to SQuAD, the MCTest dataset, involves fictional stories and questions
paired with multiple choice answers [3]. Another dataset for reading comprehension is the Daily Mail/CNN dataset, where
some answer entity is chosen from all entities in a news article passage [6, 7].

Since the introduction of the SQuAD dataset and its public leaderboard!, several high-performing neural network models
have been used for this reading comprehension benchmark. Though the question-context-answer training input structure is
the same across these models, they differ in how they relate the context and question to each other and to themselves across
multiple layers. Some of these, such as Bidirectional attention flow (BiDAF), dynamic co-attention, R-Net, and fully-aware
attention have utilized more complex forms of attention [8, 9, 10, 11]. Some models have incorporated a small amount of
feature engineering into their deep learning model, such as the Document Reader in the DrQA model proposed by [12].
Most models are end-to-end, such as the Match-LSTM and Answer Pointer model and the Dynamic Chunk Reader [13, 14].
Other models such as ReasoNet have tried re-reading each passage multiple times, mimicking human readers [15].

These past attempts have yet to surpass human performance (91.221 F1, 82.304 EM) on SQuAD, demonstrating that reading
comprehension is still a formidable problem. Our project uses the architecture of the BIDAF model as the foundation of our
experiments. We compare our model’s scores on the SQuAD dataset with those from previous models in Table 1.

'"The SQuAD dataset and leaderboard: https://rajpurkar.github.io/SQuAD-explorer/

3 Dataset

The SQuAD dataset contains 107,785 question-context pairs matched with crowdsourced answers [1]. The context passages
were collected from 536 Wikipedia articles, and every answer is a continuous span in a passage. These context categories
cover a variety of topics, from scientific concepts such as oxygen to historical figures such as Martin Luther. The dataset
also contains many types of answers, including dates, proper nouns, adjective phrases, verb phrases, and other longer
constituents. Various kinds of lexical reasoning is required to find these answers, such as usage of world knowledge and
synonym detection, and a model must also properly navigate syntactic variation and multi-sentence integration [1].

We computed several statistics of the data, presented in Figure 1. The mean word length over all contexts is 5.123, and
the average context length is 773.144 characters or 137.711 words. Question lengths tended to be around ten words, with
the average being 60.508 characters or 11.289 words. The majority of answers were extremely short, averaging 20.483

characters or 3.383 words. Answers usually appeared at the beginning of the context.

Context length (in words)

Question length (in words)

Answer length (in words)

50000

40000

30000

20000

10000

0

70000

60000

50000

40000

30000

20000

10000

0

Answer span start relative to context

14000

12000

10000

0
100 200 300 400 500 600 700 10 20 30 a0 5 10 15 20 25 30 35 40 45 00 02 04 06 08 10

Figure 1: Histograms of context, question, and answer statistics on the SQuAD dataset. The fourth plot is based on the
ratio of the answer span start index to the context length.

Using these histograms, we aimed for efficient memory usage and limited our context length to 250 tokens and answer
length to 15 tokens. Only 0.41% of answer span starts were outside our maximum context length of 250. Around 2.3% of
answer lengths are over 15 tokens. We wanted our model to focus on learning short answers because the bulk of the data
involves those, and our baseline tended to predict incorrect answers that were extremely long (see supplementary material).
The original BiDAF paper [8] does not limit the answer length, but limitation of the answer length is used by [12].

4 Approach

4.1 Best Model Architecture

Considering its high performance on the SQuAD dataset, we decided to implement a Bidirectional Attention Flow model
[8]. We began with the description of BiDAF in the assignment handout and then proceeded to incorporate all of the layers
in the full model, as shown in Figure 2.

First, the Character Embedding Layer finds the embeddings of the characters of each word in the context and question.
To extract characters, we limit the vocabulary to 256 ASCII characters and the word length to 8 characters (padding or
truncating when necessary). We obtain a sequence of 20-dimensional character-level word embeddings x{"", . .. ,m%“"
and x§hor, ..., mf\}j‘”’ for the context and question, respectively. We send these character-level embeddings through a 1D
convolutional neural network (CNN) layer with f filters and kernel size k followed by elementwise max-pooling across
the word length to obtain outputs ¢, ..., c%“”’ € RS and g§hor, ..., qf\g‘” € R/. We concatenate the character-level
embeddings with the d-dimensional GloVe word vector embeddings to obtain the final word representations &1, ..., N €
R/ for the context and ¥, . .., yys € R4/ for the question.

Next, the Word Embedding Layer passes the context and question representations x; and y; as inputs to a high-
way network [16]. Given inputs z, our highway network computes H = relu(zWpy + by) and transform gate
T = sigmoid(zWr + br) to produce outputs 2’ = H o T + z o (1 — T) (where Wy, Wr are Xavier-initialized
weight matrices and by and by are constant-initialized bias vectors). The transform gate allows for flexibility in the layer’s
behavior of modifying the inputs or simply passing them through. If T is close to O (the “carry” gate 1 — T is close to 1),
then the highway network can simply leave the inputs unchanged, but if 7" is close to 1 then the inputs are modified by H.
The highway network outputs matrices X € RV *(@+7) for the context and Y € RM*(4+/) for the question.

Next, the Phrase Embedding Layer passes X and Y through a bi-directional LSTM with hidden size h and concatenates
the forward and backward outputs to obtain matrices C' € R *2" for the context and Q € R *2" for the question.

Given these context hidden states ci,...,cy € R?? (as rows of C) and question hidden states qi,...,qy € R?" (as
rows of @), the Bidirectional Attention Flow Layer first computes the similarity matrix S € RV*M with entries S;; =
wﬁm [cl-; qj;c; o qj] where wg;,, € R%" is a weight vector (which we initialized with Xavier). Intuitively, higher entries
of S;; indicate pairs of context and question words that are more similar. The BiDAF model combines Context-to-Question

o)
§
]
!

end softmax
start softmax
/ LELS bi-LSTM

D ;éH, oo
\ “? [/ 2 stacked bi-LSTMs

BiDAF Layer

Question—Context & Context—Question

7
Phrase Embed Layer — — oo bi-LSTM — oo
k1
~t—
Highway Network Highway Network
Word Embed Layer P ey N
oo oo
/ I L
L
GloVe Word Vectors max-pool GloVe Word Vectors max-pool
t t
Character Embed Layer 1D Char-CNN 1D Char-CNN
|
Context Question

Figure 2: Model diagram. Units with the same color denote weight sharing between context and question.

(C2Q) attention and Question-to-Context (Q2C) attention for improved awareness of which parts of the question and context
are important. C2Q Attention applies row-wise softmax to obtain attention distributions o' = softmax(S;.) € R for each
context location ¢ = 1,..., N and outputs weighted sums a; = ZJIV; aé- q; € R2" of the question hidden states. Q2C
Attention applies row-wise max of S to obtain vector m € RV and then obtains attention distribution 3 = softmax(m) €
RY and outputs the weighted sum ¢’ = Eivzl Bic; € R?" of the context hidden states. Then, by combining context hidden
states with the C2Q and Q2C attention outputs, we produce the query-aware blended representations b; = [c;;a;;¢; o
a;;c; o c'] € R® for each context locationi = 1,..., N.

Next, the Modeling Layer passes the matrix B € RV*®" (with rows B;. = b;, i = 1,..., N) into two stacked layers
of bi-directional LSTM with hidden size h to obtain the matrix of encodings M € RN*2"_ As described in the BIDAF
paper [8] and verified by our experimental results, the Modeling layer is important for encoding the relationship among the
context words conditioned on the question.

Lastly, in the Output Layer, the model outputs predicted distributions p*™* = softmax(wZ, [B; M]) and p™¢ =
softmax(wg;d [B; My]) for the each example’s answer span start and end locations where W, Wend € R are weight

vectors (which we initialized with Xavier) and My € RY*2" is the output of a bi-directional LSTM given M as input.

Our overall objective function is the mean of the cross-entropy loss objective functions for the start and end distributions
for the answer span over N examples in the dataset:

N
1 S (A1l
L(6) = = Z — log p*™(yssun) — log P (yjena)
i=1

where 34" and y°™ denote the gold start and end span locations, respectively, and 6 consists of all of our trainable model
parameters. We train the model in batches and use the Adam optimizer to minimize the loss L.

To obtain our model’s predicted span locations /5% and I°", we select the answer span with by maximizing the product
of the probabilities of the start and end location subject to the constraint that the end position is at most 15 greater tokens
beyond the start position. The original BiDAF paper [8] does not enforce a maximum answer length.

lsla.rt lend _ start / -\ end/ :
(5 0%) =arg, max p™(H)p™()

4.2 Answer Pointer

We also implemented the Answer Pointer as an alternative to our softmax output layer, as described in [13]. Answer Pointer
conditions the end prediction on the start prediction. We first initialize our initial hidden state Ho € R'*"« using a question
representation as input [10]. In the equations below, g € R"s*M are our question hidden states, where h, is its size returned
by some previous layer, which is the Phrase Embedding Layer when we append Answer Pointer to the BiDAF model.

H, = softmax(v - tanh(Wyq + Vg ® en)) - q.

Then, we input a context representation ¢ € RN, where h.. is its size returned by the previous layer. If the previous
layer is the Modeling Layer, ¢ = [B; M; M2]. We run two steps of the following:

sy =v-tanh(Wee+ (Hy_1V.+ b,) ®ey) and . = softmax(s; + a ® ey),

where H; = LSTM(31 - ¢, Hp) and s € RN . The notation a ® ej; means « is tiled M times. Learned parameters are
W, € Rhaxha V, € R, W, € Rha*he V, € RPa*ha b, € RYha, v € R4, and a € RY¥L. We set p™t = 3,
and p®™¢ = 35 as our outputs.

S Experiments

Our experiments primarily used the Adam optimizer with learning rate 0.001 and we trained until we observed a plateau in
dev F1 and EM scores. Training occurred up to ~ 15K iterations for the baseline model and up to ~ 10K iterations during
development of our BiDAF model (approximately 7-8 hours on a single GPU).

5.1 Baseline Attention

The development of our best model described in Figure 2 and the previous section began with a baseline model, provided
to us by the teaching staff of CS 224N. It contained three components: a bidirectional GRU encoder layer, a dot-product
attention layer, and a fully-connected output layer with ReLU activation. We used softmax to produce our start and end
answer span distributions, cross entropy loss, and an Adam optimizer. Our baseline at 15k iterations had a F1 score of
43.434 and EM score of 34.418. All further models are built upon the framework of this baseline.

5.2 DrQA Features

Our first experiment appended two lightweight features to each context word embedding c;, as done in [12]’s DrQA model.
These features were a binary indicator of whether ¢; also appears in the question and the output of the word embedding for
c; attending to the question embeddings. We chose not to include part of speech, term frequency, and named entity features
because they would require time-consuming preprocessing and the original paper showed they yield lesser improvement.
Incorporating these DrQA features on top of our baseline and training for 6.5k iterations resulted in a F1 score of 64.582
and EM score of 53.463. However, when we later combined these features with BIDAF + Char-CNN + Span-Constraints,
we observed a decrease in the model’s dev performance during training. This suggests that these features may be redundant
when paired with more complex forms of attention and low-level character features, as we will discuss in our analysis.

5.3 Best Model Development

5.3.1 Initial Bidirectional Attention Model

The implementation of the BIDAF model began by replacing the baseline model’s attention with a bidirectional attention
layer and achieved = 7% increase in dev F1 score and = 6% increase in dev EM score. Since this model is much more com-
plex, the memory requirements are higher (especially for blended attention representations), so we reduced the maximum
context length from the default 600 to a limit of 250 tokens, as mentioned in our Dataset section.

To deepen the model’s interpretation of the relationship between the context and question, we incorporated bi-directional
LSTM layers before and after the attention layer (Phrase and Modeling layers) and achieved a significant ~ 23% additional
increase in dev F1 and EM scores. At this point, our F1 and EM scores on the dev leaderboard were 73.406 and 63.671,
respectively.

5.3.2 Prediction Strategy Improvements

With a powerful model, we anticipated that additional F1 and EM score gains would become increasingly tough to achieve
based on architecture alone. Hence, we investigated other strategies besides just the architecture. We realized that our
model sometimes output predictions that were not valid answer spans. Also, our model sometimes predicted excessively
long spans. We decided to enforce that the predicted span’s end position must be greater than the start position, but at most
15 greater. As a result, our F1 and EM scores increased by ~ 1% and ~ 0.7%, respectively. We also experimented with
maintaining exponential moving averages of the model’s trainable parameters and using these average parameters instead
of the final parameters when making predictions, but did not observe improvement in the F1 and EM scores.

Also, since we have have a good estimate of the distribution of answer lengths (using our Dataset histograms), we ex-
perimented with incorporating a prior distribution for the model’s predicted start and end location distributions. We
encouraged the model to predict shorter answers. If the probabilities of two spans (i1, j1) and (ig,j2) were equal
P (i1)p(j1) = p*®(i2)p™(j2)), then we would make the model select the span with shorter length by dividing
the product of the start and end probabilities by the span length before we performed the arg max operation. However,
the effect turned out to be too strong in discouraging the model from predicting longer correct answers. As can be seen in

our supplementary material document, our best model’s predicted answer length distribution was already performing well
without the restrictions of an answer length prior.

5.3.3 Weight Sharing Between Context and Question

Since we wanted the model to understand similarities between the context and question, we modified our BIDAF model at
the Phrase Embedding Layer to use a shared bi-directional LSTM for the context and question at the Phrase Embedding
Layer instead of two separate bi-LSTMs. This resulted in = 1.1% increase in F1 score and =~ 1.2% increase in EM score.

5.3.4 Character-Level CNN

To give our model additional input features and improve its generalization to unseen words, we extracted characters from
the context and question, embedded them into vectors, and applied a character-level CNN. Initially, we had separate CNNs
for the context and question, but deciding to share the CNN gave us a slight performance boost. Overall, the enriched feature
space gives us more than 1% increase in F1 and =~ 2% increase in EM score.

5.3.5 Highway Layer

We also implemented the highway network (Word Embedding Layer) mentioned in the BiDAF paper [8]. This layer
contributes a slight ~ 0.3% increase in F1 and EM scores. We hypothesize that the performance difference is subtle
because this layer has the capability to output its inputs unchanged by having an active “carry” gate and only occasionally
activating its transform gate. We use a single, shared highway network between the context and question instead of two
stacked highway networks because we did not observe any performance increase with an additional highway.

5.4 Answer Pointer

When appended simply on to our baseline, we were able to achieve an increase of around ~3% F1 and and ~2% EM on
the dev set by 14k iterations of training. However, when appended onto our BiDAF model, answer pointer decreased per-
formance despite experiments with different hyperparameters. Often, any initial gains would diminish within 7k iterations.
The results of adding answer pointer to our best model can be found in Table 3.

5.5 Hyperparameter Tuning

As we developed our best model, we primarily tuned hyperparameters using random search instead of grid search due to
time constraints. It has been shown in literature [17] that randomly chosen trials of hyperparameters can be more efficient.
Also, we incorporated L2 regularization into our loss function as a form of weight decay because we noticed that the
parameter norm grows over the course of training. L2 regularization penalizes large weights and reduces overfitting. We
add the term)\(%OTO) for every trainable model parameter . For additional regularization, we also applied Dropout to all of
our bi-LSTMs and to the softmax output layer. We settled with a moderate 0.15 dropout probability and kept A = 1 x 10~°
for L2 regularization as a balance between two forms of regularization.

For our optimizer, we experimented with the Adadelta optimizer used by the BiDAF paper [8] with learning rates 0.5, 1.0,
and 0.1. Compared to the Adam optimizer, Adadelta appeared to exhibit much slower yet smoother growth in our model’s
dev F1 score for all three learning rates that we tried. We decided to keep Adam as our optimizer for efficiency concerns due
to our time constraints. We also tried reducing the Adam optimizer’s learning rate from 0.001 to 0.0003 and tried increasing
the learning rate to 0.01 but did not observe any performance improvements. Hence, we kept a 0.001 initial learning rate.
Nevertheless, since our model’s dev F1 and EM scores tended to converge at 4000 iterations in most of our experiments,
we incorporated an exponentially decaying learning rate that decays every 4000 iterations with a base of 0.5. A decaying
learning rate helps prevent the model get even closer to a local minimum in the loss function when it is nearing convergence.

Some example effects of hyperparameter variation on our best model are shown in Table 4, and more details about our
hyperparameter tuning can be found in our supplementary material.

During our experiments, it was interesting that dev set loss was not always predicative of F1 or EM scores, and some
models had more gains in EM than F1 and vice versa. The performance of our best model in comparison to the state-of-the-
art models is shown in Table 1 below.

6 Results and Analysis

6.1 Ablation Study

Table 3 above lists our best EM and F1 scores on the dev set for variations of our best model when trained for 10k iterations
with all hyperparameters fixed. The Modeling Layer contributes significantly to performance, and removing it also resulted

DevEM DevFl | TestEM TestFl
Logistic Regression [1] 40.0 51.0 40.4 51.0 Hyperparameter Value
Match-LSTM + Answer Pointer [13] 59.1 70.0 59.5 70.3 learning.rate 0.001
Dynamic Chunk Reader [14] 62.5 71.2 62.5 71.0 batch_size 100
Dynamic Coattention Networks [9] 65.4 75.6 66.2 75.9 dropout 0.15
BiDAF [8] 68.0 71.3 68.0 T3 hidden_size 200
DrQA [12] 69.5 78.8 70.0 79.0 context_len 250
ReasoNet [15] - - 70.6 79.4 question_len 30
R-Net [10] 72.3 80.6 72.3 80.7 embedding_size | 100
FusionNet [11] 75.3 83.6 76.0 83.9 char_emb_size 20
Ours 66.566 76.108 66.663 76.037 12weightreg 5 x107°
Table 1: Comparison of our model’s performance with that of previous single Table 2: Some of the important hy-
models. perparameters of our best model.
DevF1 Dev EM
Best Model 76.108 66.566
Hidden Size h = 100 75.713 65.601
DevF1 Dev EM Hidden Size h = 150 75.848 65.827
Best Model 76.108 66.566 Dropout Probability 0.1 75.834 65.827
No Char-CNN 74.837 64.494 Dropout Probability 0.2 75.784 65.704
No Highway Layer 75.834 65.941 L2 Regularization A = 5+ 10~* | 75.501 65.184
No Modeling Layer 54.829 43.794 L2 Regularization A\ = 5% 1076 | 76.162 66.253
With Answer Pointer | 75.891 66.064

Table 4: Effect of hyperparameter variation on our best
Table 3: Ablations and an addition of our best model. ~ model.

in the model training in approximately 3 hours rather than 8 hours on a single GPU. The lack of improvement with the
addition of the answer pointer could be that introducing this extra component is redundant, since the Modeling Layer
already incorporates start information into its end prediction. It may also be that the incorporation of context inputs to the
answer pointer from previous layers should involve more than simple concatenation.

6.2 Example Incorrect Predictions

After training our best model, we investigated example context-question pairs for which our model predicted an incorrect
answer span. The correct span is labeled in green and the model’s predicted (incorrect) span is labeled in red.

Example 1: Questions that require a model to simultaneously handle lexical and syntactical variation can be challenging.
Here, our model must understand that “essential purpose of” and “necessary in” are synonymous. Since the question
involves “in what ... oxygen ...?”, we end up incorrectly fixating on “in medicine” near “oxygen” instead. It must also use
world knowledge to know that respiration is a type of process.

Context: uptake of o 2 from the air is the essential purpose of respiration , so oxygen supplementation is used in medicine
. treatment not only increases oxygen levels in the patient ’s blood , but has the secondary effect of decreasing resistance
to blood flow in many types of diseased lungs , easing work load on the heart . oxygen therapy is used to treat emphysema
, pneumonia , some heart disorders (congestive heart failure) , some disorders that cause increased pulmonary artery
pressure , and any disease that impairs the body ’s ability to take up and use gaseous oxygen . Question: in what process is
the uptake from oxygen necessary ?

Example 2: Another important type of question that our model has difficulty with is “Why ...” questions. Answering such
questions requires reasoning beyond just pattern-matching to find the answer within the context. In the example below, the
model fails to recognize the main topic of the context and instead mistakes the effect of oil withdrawal as the cause. The
model tends to predict answers in close proximity to locations that match words in the question.

Context: price controls exacerbated the crisis in the us . the system limited the price of ” old oil ” (that which had already
been discovered) while allowing newly discovered oil to be sold at a higher price to encourage investment . predictably ,
old oil was withdrawn from the market , creating greater scarcity . the rule also discouraged development of alternative
energies . the rule had been intended to promote oil exploration . scarcity was addressed by rationing (as in many countries
) . motorists faced long lines at gas stations beginning in summer 1972 and increasing by summer 1973 . Question: why
was old oil withdrawn from the market ?

Example 3: Also, when the question is in the form “What NOUN ...” our model sometimes incorrectly finds the NOUN
in the context and assumes that what follows it is the answer. For example, whereas to a human it’s clear that “prime
number” is the important adjective describing “theorem”, the model considers the less-important adjective phrase following

“theorem” to be the answer. The model’s performance on this type of question could improve with Part-Of-Speech (POS)
tag and Named Entity Recognition features in order to distinguish the most important modifiers of nouns.

Context: there are infinitely many primes , as demonstrated by euclid around 300 bc . there is no known simple formula
that separates prime numbers from composite numbers . however , the distribution of primes , that is to say , the statistical
behaviour of primes in the large , can be modelled . the first result in that direction is the prime number theorem , proven
at the end of the 19th century , which says that the probability that a given , randomly chosen number n is prime is
inversely proportional to its number of digits , or to the logarithm of n . Question: what theorem states that the probability
that a number n is prime is inversely proportional to its logarithm ?

6.3 Attention Analysis

To compare how our best BIDAF model and baseline model interpret context-question pairs, we visualized their attention
matrices. BIDAF’s Context-to-Question attention seems to mimic the function of our additional DrQA features by highlight-
ing synonymous or identical words (Figure 3). Hence, we infer that these extra features were no longer necessary once we
implemented BiDAF, especially with the BIDAF model’s enriched feature space of low-level character embeddings. Most
of the attention density in BiDAF’s Context-to-Question matrix corresponds to the start of the question. The Modeling
Layer interprets the interactions among the context conditioned on the question keywords.

We observe that BiDAF focuses on the question keywords such as “what” along with the first few words that immediately
follow the keyword, which happens to be a good summary of the question and hence what the model should look for in
the context. This strategy works well for finding the answer span in many cases, such as the example in 3 below. In our
supplementary materials, we have an additional visualization example using the question “there is growing interest in what
indigenous group in the amazon ?”, where BiDAF highlights “what indigenous group.”

2
g
g
8

nq
Josuods

Syooqynd

company |

won

free
advertisement -} advertisement
due due |
o 1
the -} the -}
quickbooks quickbooks
contest contest |

M

o o ° o)
o - @ = a ol
@ 5 & & 3 el

7-

z0
¥0
90

Figure 3: Context (x-axis) to question (y-axis) attention matrices for our baseline (left) and BiDAF (right).

ocoooo
Ot i W
N®AEO

attention

ickbooks -
a-
30-second -

in -
commercial |

sponsored |
a
small
contest |
which
death -
wish -
coffee -
had -
quickbooks |
beat
out
nine -
other
from

qQu

advertisement -

Figure 4: BiDAF question to context attention, where the context is along the x-axis. The question is "What company won
a free advertisement due to the quickbooks contest?”” and the correct answer is “death wish coffee.”

6.4 Question, Answer, and Context Types

We split questions into types according to their starting word, and these counts and average answer lengths can be seen in
Table 5. We looked at performance across different answer lengths, bucketing these lengths into ranges of 0-2, 3-4, 5-9,
10-15, and 16+ tokens. Our baseline model predicted answers that were too long, while our best model conformed to the
actual length distribution (see supplementary material). Both our baseline and best model performed worse as the length
of the true answer increased (Figure 7). On question types determined by starting words, our best model performed better
than the baseline across all question types, but revealed the same trends. Questions starting with when tend to be easiest,
while why questions are most difficult. Questions starting with why are also rare and have longer answers (Table 5 & Figure

baseline EEm best model

075
word | frequency average answer length 050
what 4704 3.495 e
who 1057 2.813 o
when 676 2.327 0.00
how 1045 3.045
which 451 2.818 06
in 436 2.165 = 04
the 233 2.627 02
where 431 3.443 00
why 150 7.233 what who when how which in the where why
Table 5: Words with question-starting frequency above 100. Figure 5: Scores across question types.
baseline =N best model baseline B best model
06 06
~ 04
w ~ 04

06
06
04
E 04
02 =
w
02
00
0 1 2 3 4 J
00 -
0-2 34 59

Figure 6: Score across context categories. Please see supple-
mentary material for context article titles in each category. Figure 7: Score across true answer lengths.

10-15 16+

5). If we had more why questions in our dataset of shorter answer lengths, we may be able to disentangle if the difficulty
of these problems is due to the reasoning they involve or simply answer length. Questions that start with how also perform
poorly though they have short answers and are less rare, which suggests that questions that require more interpretation are
generally more difficult. Questions that start with when may be easy because their answers may fit to standard formats,
such as dates, or occur around prepositions such as “during” or “after”. Finally, we categorized contexts into broad topics
by grouping them based on their Wikipedia article titles, creating truncated SVD tf-idf vectors for these groupings, and
clustering these vectors using k-means. Our clusterings can be found in our supplementary material file, and a comparison
between our baseline and best model is in Figure 6. Overall, performance for each model is consistent across topics, though
it seems like historical and geographical topics (clusters 0 and 2) are easier for exact match.

7 Conclusion

Overall, by implementing a high-performing neural network for question answering on SQuAD, we learned a lot about
advanced neural attention mechanisms and the process of training and tuning models. Though we obtained significant gains
in F1 and EM scores by replacing the baseline attention with complex bidirectional attention, the most gains were obtained
by our Modeling layer (=~ 20% increase in F1 and EM), which uses bi-LSTMs on top of the attention output to help the
model interpret the context words conditioned on the question. Once we implemented our BiDAF model architecture,
it became challenging to obtain further improvements beyond our official evaluation score of 76.108 dev F1. All other
performance improvements were incremental: we obtained only a few percentage increase with each of our later ideas.
As discussed, we spent time tuning many hyperparameters, but our selected hyperparameters appear to be locally optimal.
With more time and computational resources, we would perform a thorough regularization grid search to find a more optimal
combination of hyperparameters that gives our model even better generalization to held-out examples.

Besides more tuning, we have several other ideas for improving our model. We had begun implementation of R-Net [10] and
fully aware attention [11], where all intermediate representations of the question and context are taken into consideration
for the output. Additionally, we are interested in using Contextualized Vectors (CoVe) as inputs, which have been shown
to improve SQuAD performance [18]. Since we showed that world knowledge requirements, longer answers, and why
questions pose the biggest challenge to our model, it would be interesting to train on a large dataset focusing on these
types of examples. In particular, the original SQuAD paper [1] manually categorized a sample of examples into different
reasoning types, and it would be interesting to expand that annotation to the entire dataset to see how our model performs
across these types [1]. After all, reading comprehension should not just involve matching the question to an answer from
the context, but also understanding what is read.

References

[1] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for machine comprehension of text,”
arXiv preprint arXiv:1606.05250, 2016.

[2] C.D.Manning, “Computational linguistics and deep learning,” Computational Linguistics, vol. 41, no. 4, pp. 701-707,
2015.

[3] M. Richardson, C. J. Burges, and E. Renshaw, “Mctest: A challenge dataset for the open-domain machine compre-

hension of text,” in Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing,
pp. 193-203, 2013.

[4] J. Berant, V. Srikumar, P.-C. Chen, A. Vander Linden, B. Harding, B. Huang, P. Clark, and C. D. Manning, “Modeling
biological processes for reading comprehension,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1499-1510, 2014.

[5] H. Wang, M. Bansal, K. Gimpel, and D. McAllester, “Machine comprehension with syntax, frames, and semantics,’
in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 2: Short Papers), vol. 2, pp. 700-706, 2015.

[6] D. Chen, J. Bolton, and C. D. Manning, “A thorough examination of the cnn/daily mail reading comprehension task,”
arXiv preprint arXiv:1606.02858, 2016.

[7] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and P. Blunsom, “Teaching machines
to read and comprehend,” in Advances in Neural Information Processing Systems, pp. 1693-1701, 2015.

[8] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow for machine comprehension,” arXiv
preprint arXiv:1611.01603, 2016.

[9] C. Xiong, V. Zhong, and R. Socher, “Dynamic coattention networks for question answering,” arXiv preprint
arXiv:1611.01604, 2016.

[10] W. Wang, N. Yang, F. Wei, B. Chang, and M. Zhou, “R-net: Machine reading comprehension with self-matching
networks,” Technical Report, Microsoft Research Asia, 2017.

[11] H.-Y. Huang, C. Zhu, Y. Shen, and W. Chen, “Fusionnet: Fusing via fully-aware attention with application to machine
comprehension,” in International Conference on Learning Representations, 2018.

[12] D. Chen, A. Fisch, J. Weston, and A. Bordes, “Reading wikipedia to answer open-domain questions,” arXiv preprint
arXiv:1704.00051, 2017.

[13] S. Wang and J. Jiang, “Machine comprehension using match-Istm and answer pointer,” arXiv preprint
arXiv:1608.07905, 2016.

[14] Y. Yu, W. Zhang, K. Hasan, M. Yu, B. Xiang, and B. Zhou, “End-to-end answer chunk extraction and ranking for
reading comprehension,” arXiv preprint arXiv:1610.09996, 2016.

[15] Y. Shen, P-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop reading in machine comprehension,” in Pro-
ceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1047—
1055, ACM, 2017.

[16] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,” arXiv preprint arXiv:1505.00387v2, 2015.

[17] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” Journal of Machine Learning Research
13,2012.

[18] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in translation: Contextualized word vectors,” in Advances
in Neural Information Processing Systems, pp. 6297-6308, 2017.

