Exploring speed and memory trade-offs for achieving
optimum performance on SQuAD dataset

Renat Aksitov
raksitov@stanford.edu

Abstract

In this project I am building deep learning system for reading comprehension
in Stanford Question Answering Dataset. I am constructing the architecture of
my system by exploring some high performing models for SQuaD, and carefully
choosing which of their details I could adapt, which ones I might need to change
and which ones to drop altogether. My choices are primarily dictated by the
computing resources constraints. Overall, I was able to train single model that
achieved 76.37 F1 and 66.00 EM on dev dataset and ensemble of 10 models that
achieved 79.86 F1 and 71.75 EM on test dataset.

1 Introduction

The focus of this project is applying deep learning techniques to the question answering for reading
comprehension. This is a challenging task for an algorithm, as it requires both understanding of
natural language and knowledge about the world. Deep learning system might acquire required
understanding and knowledge purely from the annotated data, but it will need high quality data and a
lot of it.

Recently, after introduction of the SQuAD data set [1], which is arguably the first data set for question
answering that satisfies these requirements, a lot of progress has been made in a very short time in
applying deep learning to a reading comprehension problem. Several original high performing models
were introduced in a fast succession by researchers around the world with a culmination in February
this year when Microsoft Research submitted [6] first model that exceeded human performance on
one of the SQuAD metrics.

2 Background

To make a very difficult problem more approachable, SQuAD dataset defines some constraints on
questions and answers that are considered. The problem definition is as follows. Given the text (also
called context or passage) and the question (also called query) about the text, we need to choose a
span in the text, that will be answering the question. For evaluating correctness of the answer, we
will be using human labels. Evaluation data has 3 labels from different people per example, and
sometimes it is 3 different spans. Selecting either one of them will be considered correct, which
makes the task a bit easier. SQuAD defines two evaluation metrics: the exact match (EM) and more
forgiving partial match (for which F1-score is used).

One method, that had a lot of success on SQuAD data set, came from Neural Machine Translation and
is called attention. The idea is to make different parts of a model to attend to each other. For example,
we might want the model to be aware of a query, when encoding a context or vice versa. One high
performing model that adds both context2query and query2context attention is called BiDAF [2] and
it has achieved state of the art results on SQuAD when it was first introduced.

3 Approach

I am starting with the provided baseline and then build upon it with various improvements, many of
which I am borrowing from the BIDAF model [2]. In this section I will be describing improvements
themselves, and I will outline their impact on the final model performance in the next section.

The baseline model has 4 main components: word embeddings, context encoding, attention flow
layer and output layer. The only 2 components that are missing in the baseline from the BiDAF
architecture are character embeddings and modeling layer.

Character embeddings are considered useful for handling unknown (OOV) words, but, as could be
seen from the ablation table in [2], adding them boosts BiDAFs F1-score on SQuAD dev set by less
than 2 points. After considering this I decided that instead of implementing character embeddings I
might as well try to reduce the amount of OOV words directly. The baseline model uses GloVe word
embeddings pre-trained on Wikipedia data with 400K vocabulary. Replacing these embeddings with
the ones pre-trained on Common Crawl data with 1.9M vocabulary increases amount of the words
known to the model almost fivefold.

Context encoding component in the baseline applies a 1-layer bidirectional GRU to the question
and context embeddings. The resulting forward and backward hidden states produced by GRU are
concatenated to obtain the context hidden states and the question hidden states. I have modified the
encoder in the following ways:

e added support of multiple layers.

e provided option to choose different encoder for question and context (e.g., not to share
weights, as baseline does).

e implemented capability to pass final encoding states from question encoder as an initial
states into the context encoder (this could be done independently from previous choice
of whether to share weights or not), with the idea that it could be useful for the context
encoding to be aware of the question representation.

e made RNN cell type configurable (specifically, other than GRU, I have also tried LSTM and
LayerNormBasicLSTMCell; the authors of the latter promise performance improvements
on NLP tasks [4] over standard LSTM, but, unfortunately, I have found that Tensorflow
implementation of it is very slow, so it seems prohibitively expensive to use at the moment).

e set up 3 additional ways to combine final states besides concatenation - adding, averaging
and max pooling.

The next step is to apply attention to the hidden states produced by the context encoding layer. In the
baseline we take basic dot-product attention, with the context hidden states attending to the question
hidden states. The attention outputs are then concatenated to the context hidden states to obtain the
blended representations. I have made 2 changes for this layer:

e in the basic attention module, I have added element-wise product between attention output
and context hidden states, similarly to how it is done in BiDAF. Theoretically, deep network
should be able to learn such feature cross by itself if needed, but, by providing it, we are
simplifying the task for the network and the convergence speed might improve.

e [have also added a new module, with an implementation of Bidirectional Attention Flow
from BiDAF paper. Unlike baseline, which has only Context2Query attention, here we also
add Query2Context attention. Another difference from the baseline is that the dot product
is replaced with trainable similarity function. New module could be used instead of basic
attention module interchangeably in my implementation.

Embedding Contextual Attention Modeling Output
Layer Encoding Layer Layer Layer

J LSTMf—LSTM
Query l T l T /\
L Lo LsTM—lLsT™ Feed Forward
: H +
Softmax
_ vv)) [
LSTM | LSTM LSTM
L | H
] l T ContethQuqu1
LSTM —— | LSTM LSTM LSTM
— +
Context l T 1 l T l T Softmax
LSTM LSTM LSTM v
— Tr Query2Context | I
LSTM J LSTM[—|LSTM @
—) |

Figure 1: Model Architecture

Next is a modeling layer. This is the only new architectural level component that I am adding to the
baseline structure. It takes an output of the attention flow layer and encodes it with an RNN encoder,
similarly to what context encoding component does. In fact, I am using the same encoder module for
both of these layers and all of the options mentioned in the context encoding layer description are
applicable in the modeling layer as well.

The output layer in the baseline takes representations produced by the previous layer, passes them
through the feed forward network and applies softmax to get probabilities of the start positions. The
same is done independently for the end positions. BIDAF improves on this by making end predictions
dependent on start predictions and by adding another bidirectional RNN before the end prediction
module. The final layout of the model is presented in the Figure 1.

4 Experiments

While in the previous section I was describing my model architecture from the hierarchical point of
view, layer by layer, in this section I will present what I did in the order of implementation and will
provide justifications of this ordering. My main goal was to train the best model I could in the limited
time I had, which defined my overall strategy for the project. The first priority was to lower training
time and to keep it low (for example, for the baseline, getting to peak performance with the default
hyper parameters required 15K iterations or 5 hours on GPU, which is way too long).

4.1 Reducing training time

Following the suggestion from the project handout, I have started with looking into the the data. As
could be seen from the histogram at Figure 2, we could limit context length to 300 tokens and get 2x
speed up as a result (in exchange for a very small, less than 2%, reduction in training data). On the
other hand, I left question length limit without change, as questions are much shorter than contexts
anyway and there is not much to gain from them in terms of overall speed improvement.

2.5 hours for the baseline training still felt like too much, so 4000

40000

I decided to reduce my training time further. To achieve it, I
sampled 10 times smaller data set from the training data and did 30000

€ 25000

most of my experiments and hyper parameter tuning on it. For = £,
example, training baseline to the peak on this data was reduced =~ w=

10000

to 10-15 minutes. Later, when the model became more complex, so00
the training time increased, but mostly stayed under 1 hour. g e — 00

Context length (tokens)

35000

Another important point in optimizing training speed is to make
sure that GPU is always saturated, as the processing time for

30000

25000

batches of different sizes is the same, as long as GPU does not
crash with OOM. As a consequence, I am always choosing the £ 1o
largest batch size that could fit into GPU memory. ¥ 1000
4.2 Improving spans predictions M il

After making speed of hyper parameters search reasonable and
choosing set of hparams on small data set, I have trained the
baseline on the full training data. When looking into the output
of this model, one problem was painfully obvious. The model
was choosing start and end of an answer span based purely on
the softmax output, and it was often producing invalid spans, S — |
e.g. spans with the end happening before the start. The simplest RS
possible fix is first to choose a start, and then to choose an end Figure 2: Data distribution.
from the interval [start :]. But we could do better than that!

As we already know (see Figure 2) the answers are in general

very short, so we can limit this interval further to something like

[start : start 4+ 15). Finally, instead of choosing start and end

separately based on maximum probability of each, we could, as done in [5], choose the span (i, j)
such that i <= j < i + 15 and probability p**®"* (i) * p°™¢(j) is maximized. This approach produces
slightly better results and the resulting number could be interpreted as a confidence score, which 1
will use later when building ensemble.

Model architecture F1 score (dev) | EM (dev) | F1 score (test) | EM (test)

Baseline 43.37 34.19 n/a n/a
As above + spans improvements 50.19 39.26 n/a n/a
As above + LSTM instead of GRU 52.37 41.15 n/a n/a
As above + 1 modeling layer 65.58 54.32 n/a n/a
As above + 2 modeling layers 74.7 64.05 n/a n/a
As above + bidirectional attention 74.84 64.26 n/a n/a
As above + Common Crawl 75.75 65.71 n/a n/a
Final model (single) 76.37 66.00 n/a n/a

Final model (ensemble) 79.01 70.31 79.86 71.75
original BiDAF (single model) 77.3 67.7 77.3 68.0
original BiDAF (ensemble) 80.7 72.6 81.1 73.3

Current top F1 ([6]) n/a n/a 89.28 82.48

Current top EM ([6]) n/a n/a 88.76 82.84

Human Performance ([6]) n/a n/a 91.22 82.30

Table 1: Performance results and comparisons

4.3 Main modifications

After fixing basic span prediction errors, I replaced GRU with LSTM, as was suggested by my further
hparam search on the small data set, and decided to add the modeling component. Adding it produced
the biggest gains of all the changes and became very hard for me to improve upon. For example,
replacing basic attention with bidirectional in this architecture was not producing any measurable
gains for some time, until I also switched to Common Crawl embedding with much larger vocabulary

(see the corresponding F1/EM numbers in Table 1). Adding the modeling layer and 300 dimensional
embedding led to large increase in model size, which immediately raised an issue of exceeding GPU
RAM limit.

4.4 Reducing memory usage

Two things that helped the most with lowering my memory consumption were limiting context size
and using maximum for combining hidden states in the encoders output instead of concatenation.
Applied together, they have reduced memory footprint of the model by the factor of 4. At the same
time, the performance drop from using these optimizations was, from my measurements, below 1%.

Another problem with memory was the size of the checkpoint on disk, which was sometimes large
than 100Mb. I solved it purely by luck. When I switched to CommonCrawl embeddings, I have found
out that Tensorflow does not support creating tensors larger than 2Gb and that the solution is to create
placeholder and feed the embedding into it during run. After this change, checkpoint size dropped
below 20Mb even for models with a lot of parameters. I think that without this optimization it would
have been much harder for me, if not impossible, to do ensembling later.

4.5 Things that did not work

Some things that were used in the BiDAF paper or in some other high performing SQuAD models,
like R-Net [7], for example, just did not work for me for various reasons. One, notably, was Adadelta
optimizer. The problem with it that it converges much slower than Adam, so even if it will eventually
find a bit better solution, it was just impractical to use under project’s time constraints. Another
was using additional RNN encoder when predicting ends. I have left this encoder as part of the
architecture (turned off by default), but in my experiments I was not able to notice any improvement
from using it.

4.6 Finalizing hyper parameters

I have listed all the hyper parameters of my best single model in the Table 2. To train this model I've
switched back to concatenation and increased context length to 400 to improve final performance
by additional 1%. Also, notice that I am not listing batch size in the table. This is because, as I
mentioned before, I'm always choosing batch size so that GPU is saturated.

Hyper Parameter Value Search Space
Optimizer Adam { Adam; Adadelta }
Learning rate 0.003 {0.1..0.0001 }
Context length 400 {250 .. 600 }
Context encoder (# of layers) 1 {12}
Context encoder (hidden size) 100 {50..200}
Modeling layer (# of layers) 2 {1;2;3}
Modeling layer (hidden size) 75 {25..125}
Dropout 0.19 {0.1..03}
RNN cell LSTM | { GRU; LSTM; LayerNormBasicLSTMCell }
Grad norm None { None; 1.0.. 10.0 }
Combiner concat { concat; mean; max; average }
Answer length 23 {10..30}

Table 2: Final hyper parameters

4.7 Ensemble

To improve the numbers a bit further still I am using ensemble of several most recently trained
models. I have tried two techniques for ensembling: choosing an answer of a model with the highest
confidence score and "voting", when the answer rating is the sum of confidence scores of the models
that have chosen this answer. A bit surprisingly for me, voting performs about two times better than
"highest confidence". My expectation before trying was that all the models would likely be choosing
a bit different span (because the space to choose from is large) and the situation when the same

answer is chosen by more than 1 model will occur very rarely. In reality it seems that the opposite is
happening.

To decide whether the specific model should be included into the ensemble, I am using greedy
approach. E.g. I am adding models one by one and keep only the ones that improve the results of
evaluation. After deciding in this way on a specific set of models to include, I evaluate this ensemble
with different limits for answer length set during inference. One surprising thing that I have found
from this is that ensembling seems to improve model understanding of longer answers: if for single
model optimum limit is around 15, for ensemble it grows with more models added and for 10 models
optimum limit rises to 23.

5 Conclusions

At the end, I was able to train a high performing model for Reading Comprehension, which achieved
competitive ranking on the class leader board. I had several ideas, that I did not have the time to
implement, but I still believe that they could improve my model performance further and might be
worse trying in the future. One idea was to use some form of a dynamic padding instead of limiting
context length and, as a result, to avoid even minimal loss of training data. Another was adding
self-attention layer from R-Net paper [7] after the bidirectional attention layer. Judging from the
official leader board [6], this is a popular and high performing combination. Finally, I think that the
span prediction could still be improved further, so it could be interesting to try pointer networks in
the future, like done in [8].

The implementation will be made available at github. com/ raksitov/ squad.

References
[1] Rajpurkar, P, Zhang, J., Lopyrev, K. and Liang, P., 2016. Squad: 100,000+ questions for
machine comprehension of text. arXiv preprint arXiv:1606.05250.

[2] Seo, M., Kembhavi, A., Farhadi, A. and Hajishirzi, H., 2016. Bidirectional attention flow for
machine comprehension. arXiv preprint arXiv:1611.01603.

[3] Pennington, J., Socher, R. and Manning, C., 2014. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP) (pp. 1532-1543).

[4] Semeniuta, S., Severyn, A. and Barth, E., 2016. Recurrent dropout without memory loss.
arXiv preprint arXiv:1603.05118.

[5] Chen, D., Fisch, A., Weston, J. and Bordes, A., 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

[6] rajpurkar.github.io/SQuAD-explorer/
[7] wuw.microsoft.com/en-us/research/wp-content/uploads/2017/05/r-net.pdf

[8] Shuohang Wang and Jing Jiang. Machine comprehension using match-Istm and answer
pointer. arXiv preprint arXiv:1608.07905, 2016.

