Combining Attention Approaches for the SQuAD
Challenge

Luke Asperger
CS 224N: Natural Language Processing with Deep Learning
Stanford University
lukeal7@stanford.edu

Abstract

This paper describes an approach to machine comprehension that specifically ad-
dresses the Stanford Question Answering Dataset. This paper describes a model
that combines multiple effective ways of using attention, including bidirectional
attention flow and self-matching attention, to achieve strong results on the SQuAD
challenge. Other important features of this model included using several layers of
bidirectional recurring networks for modeling as well as convolutional networks
to model character-level interactions. Although with more time, this model could
have been further fine-tuned and additional features could have been added, the
final model achieved results competitive with single-model results from many of
the highest-performing research papers.

1 Introduction

Machine comprehension is a difficult challenge in natural language processing. Understand lan-
guage requires recognizing complex interactions and relationships between words and sentences.
However, huge advancements have been made in recent years with the rising popularity of neural
networks, which have the ability to model highly complex phenomena when trained with enough
data.

Question answering in particular is an important area of study because it has endless applications.
The Stanford Question Dataset (SQuAD) was developed at Stanford in 2016 and has since become
the de-facto dataset for researchers and tech companies to design and run models on. For this class,
students were given a baseline model that function but performed rather poorly and were asked to
build upon that model.

2 Background

The Stanford Question Dataset is a reading comprehension dataset consisting of context passages
from Wikipedia and questions about these passages. Answers sourced from Amazon Mechanical
Turk point to specific spans of text in the passage.

The two performance metrics we use are Exact Match (EM), the percentage of questions for which
the models prediction exactly matches the ground truth, and F1, the harmonic mean of precision (the
percentage of answer that is part of the ground truth) and recall (the percentage of the ground truth
that is included in the predicted answer).

The dataset is broken up into three parts: a training set, a dev set and a test set. As different models
are trained on the training set, their performances can be compared using the dev set. To avoid
overfitting, a final test set is used that is kept secret and only used to evaluate a final model.

3 Approach

The overall design of my model pulls key aspects from two of the currently highest-performing
models, Bidirectional Attention for Machine Comprehension' (hereafter referred to as BiDAF) and
R-NET: Machine Reading Comprehension with Self-Matching Networks>. Both of these models
introduced novel and effective ways of applying multiple layers of attention to the embeddings,
which seems one of the most effective ways of improving performance.

After adding the attention layers described in the above papers, I experimented with various extra
modeling layers, added character-level convolutional neural nets and tuned various hyperparameters
to boost performance. Figure 1 shows the overall design of the full question-answering model. The
specific implementations of each layer are described in the following section.

Softmax with Cross-Entropy

Bi-Directional LSTM Second Layer

Bi-Directional LSTM First Layer Eully Conmectod Fet U Eayer

%

‘ | Context Self Attention Layer
1

—
| Fully Connected ReLU Layer
(—J t
—_—
Question-to-Context Attention\ Context-to-Question Attention ‘

ﬁj Q Similarity J %

Bi-Directional LSTM Encoding Layer '~ Matrix ~ ' Bi-Directional LSTM Encoding Layer |

’—J % Tﬁ

Convolutional Layer Convolutional Layer

f i
| Context Word Embeddings | |Context Char Embeddings. | Question Word Embeddings | | Question Char Embeddings |

Figure 1: High-level structure of full model

3.1 RNN Encoding Layer with Character-Level CNNs

Once context paragraphs and questions are preprocessed, including tokenization and the mapping
of each word to its corresponding index in the embedding matrix, each word is mapped to a 300-
dimensional embedding vector. One important detail is that the final training run was performed
using pretrained embeddings from the GLoVe 840B Common Crawl set, which included 2.2 mil-
lion case-sensitive embeddings and was trained over a much larger corpus than the 400,000 case-
insensitive embeddings from the 6B set used in the baseline model.

Each character of each word is mapped to a 20-dimensional trainable character embedding. The
character embeddings are passed through convolutional neural networks of window sizes 2, 3, 4,
and 5, each with 50 filters. The resulting CNN outputs are concatenated to the GLoVe embeddings,
resulting in a final embedding size of 500 for each token. These embedding are fed through a
bidirectional LSTM encoding layer, which outputs forwards and backwards hidden state vectors of
dimension 200 each.

'Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. ”Bidirectional attention flow
for machine comprehension.” arXiv preprint arXiv:1611.01603 (2016).

*Wang, Wenhui, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. “Gated self-matching networks for
reading comprehension and question answering.” In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 189-198. 2017.

3.2 Bidirectional Attention Flow

There are two parts to the bidirectional attention flow as outlined in the BiDAF paper, Context-to-
Question attention and Question-to-Context attention. Both rely on the output of a similarity matrix,
calculated as follows, where c; and g; represent the context and question hidden states, respectively.

T . . .
Sij = Waimlci; 455 €i © G5]

To calculate the Context-to-Question attention outputs, we apply a softmax to each row of the simi-
latity matrix, which gives us an attention distribution, which is then used to take a weighted sum of
the question hidden-states.

The Question-to-Context outputs are calculated similarly, but first we take the max of each row of
the similarity matrix. This gives us a single vector of length context length, which we then apply
a softmax over and take a weighted sum of the context hidden states. We then produce a final
bidirectional attention output b; by taking concatenation the outputs as follows, where a; is the
Context-to-Question attention output and ¢’ is the Question-to-Context attention output. For further
specifics how the weighted sums are calculated, see the BiDAF paper.

PP . /
bi = [Ciaaivci 0 a5 C OC]

3.3 Self-Attention

The bidirectional attention layer produced an output vector of length hidden size - 8 for each context
word, so we pass these representations through a simple fully-connected layer with a ReLU activa-
tion to reduce the dimensionality, this time to a hidden size of 100 because the memory requirements
of the Self-Attention layer are quite demanding.

To apply Self-Matching Attention, we construct another similarity matrix, this time applying addi-
tive attention between context words as follows.

6; = VT tanh(lej + WQVZ')

Just as in the bidirectional attention layer, we then apply a row-wise softmax max to obtain an
attention distribution, which we use to take a weighted sum of the context vectors. These outputs
are concatenated to the output of the fully-connected layer and are then passed on to the modeling
layer.

3.4 Stacked RNN Modeling Layer

The modeling layer is critical for performance, and is inspired by the modeling layer in BiDAF.
We use a bidirectional LSTM in this layer similarly to the encoding layer, but now the RNN inputs
have been encoded with more information about both the question and the other context words. To
increase the modeling ability of this layer, we stack two LSTMs on top of each other.

3.5 Pointer Network

The final layer of the model is another bidirectional LSTM just as in the modeling layer, but this time
we feed in information about the questions one more time by setting the initial states of the LSTM to
be the question representations from the encoding layer (fed once through a fully connected ReLU
layer). The outputs of this last RNN are fed into a down projecting fully-connected layer so that
a softmax can be applied to generate probability distribution for start and end points of the answer
spans. The span’s end location is conditioned upon the start location such that the end location must
come after the start location.

Dev F1 as Successive Improvements Added

0.700

. //r-//j’_/\

Dev F1

0.000 4.000k 8.000k 12.00k 16.00k 20.00k 24.00k
Iteration
— Bidirectional Attention Flow
— Self-Matching Attention
— LSTM Modeling Layer
— Character-level CNNs
— Hyper-parameters Tuned

Figure 2: Plot showing improvements in F1 score as improvements were made to model

4 Experiments

4.1 Process

In order to evaluate the performance of each improvement individual, the majority of experiments
were run with only one module changed or added at a time. Figure 2 shows the improvements in
Dev F1 Score as changes were made. As the graph shows, the additions of the self-attention layer
and the stacked LSTM modeling layer provided quite significant boosts of around 10% each. The
character-level CNN was added after the modeling layer and provided a boost of around 2%.

4.2 Hyper-parameters

One major hyperparameter change made from the baseline was reducing the maximum question and
context lengths from 30 and 600 to 20 and 350 respectively. This reduced memory constraints and
allowed batch size to be increased from 10 to 25, resulting in much more efficient training. Another
notable improvement is that using the 840B GLoVe embedding yielded a final F1 improvement of
around 2%. This gain is likely because the number of out-of-vocab words decreased significantly.

Table 1 shows a full list of the main hyperparameters in the final model. I adopted a dropout rate of
0.2 since the majority of papers I reviewed used that, but with more time I would have attempted to
further tune regularization. The sizes of the embeddings and hidden layers were chosen mainly to
meet memory constraints for the GPU used to train the model. Potential gains could be realized by
increasing these sizes and training on more powerful machines.

4.3 Results

Overall, the results for my model turned out quite well. The final Test F1 score was 77.0 and the
final Test EM of 67.9. As Table 2 shows, my model’s performance is essentially right on par with
BiDAF and R-Net. Because I did not have time to train an ensemble model, I only compare to the
single model performances of these models. Additionally, I only had time to train my final model

Table 1: Key hyper-parameters in final model

PARAMETER VALUE
Max Context Length 350 Words
Max Question Lenth 20 Words
Pretrained Word Embedding Source . GLoVe Common Crawl (Trained on 840B Tokens)
Word Embeddings Size 300
Character Embedding Size 20
CNN Window Sizes 2,3,4, and 5 Letters
Filters Per CNN 50
Batch Size 25
First Hidden Layer Size . 200
Second Hidden Layer Size 100
Dropout Rate 0.2
Max Gradient Norm 5.0
SGD Optimizer Adam (Learning Rate = .001)

for 7.5 epochs, whereas BiDAF, for example, was trained for 12 epochs. I believe a longer training
period would be a very simple way to obtain slightly higher results.

Table 2: Performance of Various SQuAD Models
Model Test F1 Test F1

My Model . 77.0 67.9
BiDAF (Single Model) 77.3 68.0
R-Net (Single Model) . 71.5 68.4

4.4 Attention Visualizations

One of the most important aspects of this model is the combination of the bidirectional attention
layers and the self-attention layers. The following figures help visualize what is actually going on in
these layers for an example. For brevity, only the first 20 words of the context paragraph are shown.

Context: North American Aviation won the contract to build the CSM, and also the second stage of
the Saturn V...

Question: Who was rewarded with building the CSM?
Answer: North American Aviation

Figure 3 shows attention distribution when Context-to-Question attention is applied. The intuitive
way to look at this is that the context words are highlighting which parts of the question are most
important. We see the darkest cells for "Who”, ’building” and ”CSM”, which one could easily argue
are the most important words of the question. It is also interesting to note that that, not surprisingly,
the attention scores for ’CSM” matched with ’CSM” and “’build” match ”building” are quite high.

Conversely, Figure 4 shows the attention distribution for Question-to-Context attention. It is notable
from this figure that "CSM” and “Saturn V” still appear to be emphasized more than the correct
answer by the attention layer, but ”’Aviation” is still highlighted to some extent.

Finally, Figure 5 shows the attention distribution for the Self-Matching layer. Here, ”Aviation”
appears to be highlighted darker than before, so the interactions between Aviation” and the rest of
the context appears to have done something to increase its perceived importance. Although ”Saturn
V” is highlighted darkly as well, the model did go on to select the right answer, so presumably
something in the modeling layer helped determine that ”"North American Aviation” was a better
answer than ”Saturn V”.

Saturn

of
stage
second
the
also
and

CsSM
the
build
to
contract
the

- T
Aviation
American
North

Who w'as rewa'rded wi'th built:ling th'e CSIM ?

Figure 3: Visualization of Context-to-Question attention distribution

No;'th Amel"ican Avia'tion won mle contract t;> bu’lld ﬂ;e CsM
and also the second stage of the Saturn \

Figure 4: Visualization of Question-to-Context attention distribution

VA
Saturn
the

of
stage
second -
the 4
also
and A

=

CSM -

the

build |

to
contract A
the 4

won -
Aviation A
American -
North 1

won -

the

to 4

build

the

CSM A

and -

also 4

the

of 4

the
Saturn

North -

American -
stage

et S N
m

contract
second -

Figure 5: Visualization of Self-Matching attention distribution

5 Conclusion

This model successfully combined several key aspects of R-Net and BiDAF to obtain strong results
on the SQuAD test set. Bidirectional attention and self-matching attention work well together.
A bidirectional stacked LSTM modeling layer serves as an effective final layer before prediction.
Additional gains were achieved by adding character embeddings with convolutional neural nets as
well as tuning context and question length to allow for efficient training.

There are certainly several improvements that could be made to this model to improve results. One
extension I would have liked to add was another Question-to-Context attention layer after the mod-
eling layer. In my model, the self-attention layer and modeling layers have little interaction with the
question, so it seems logical that a final interaction with the question at the end could be useful. I
explored this concept and ran several experiments but was unable to tune the design successfully in
time.

There are also simpler improvements that would be quite likely to improve performance. Features
such as part-of-speech and name-entity tags could be added to the initial embedding in order to
encode more information. The model could also be trained using two GPU’s, as the memory ca-
pacity would allow the model to more easily tolerate longer question and context lengths. A final
improvement worth testing is using a pretrained RNN encoding layer such as ELMo.

6 References

[1] Seo, Minjoon, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. ”Bidirectional attention flow
for machine comprehension.” arXiv preprint arXiv:1611.01603 (2016).

[2] Wang, Wenhui, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. ”Gated self-matching networks for
reading comprehension and question answering.” In Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 189-198. 2017.

