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Abstract

Our project explores Visual Question Answering on multiple-choice questions
given an image. Based on recent works using different mechanisms, we first build
a Bag-of-Words model with MLP [1, 2] using GloVe word embeddings [3] and
ResNet image features [4], which outperforms the original LSTM with attention
model [5]. We further extend it by replacing our language model with LSTM and
add stacked spatial attention layers following [6] to capture the interaction be-
tween the words and image regions. We investigate different aspects of the VQA
task on the Visual7W dataset [5] by experimenting with many different settings
and obtain interesting results. Finally, we present analysis on which options con-
tribute to better results.

1 Introduction

By combining visual and language understanding, two of the most important input modalities in
artificial intelligence, visual question answering (VQA) has sparked wide interests in research
community since the term was officially coined [7]. Under the VQA setting, a model should be able
to answer a natural language query about an image. Different from object recognition, the free-form
query requires natural language understanding beyond classification with discrete labels. Different
from text-based question answering, VQA further requires the model to find semantic links between
the textual description and the image, thus complicating the learning task.

In this project, we are interested in learning what is important to a VQA model. Besides trying to
train a good performance model on the dataset. We are interested in understanding where the model
gets information for predicting the answer, and how visual and textual component correspond to
each other. With this goal, we start off with a simple bag-of-words model, and incrementally adding
complexities to the model including LSTM and stacked spatial attention, based on inspirations from
related works. The paper is organized as follows: section 2 provides a brief overview of recent de-
velopment in VQA; section 3 will explain our approaches, while section 4 provides implementation
details and discussion about results.

2 Related Work

21 VQA

Since its introduction in [7], VQA has attracted wide interests in joint understanding of vision and
natural language, and various datasets have emerged to support related research [7, 5, 8]. VQA
requires understanding of both visual and language input. For the visual component, it is common
practice to use a pretrained CNN [9, 10, 4] as feature extractor of the input image [5, 1, 2]. For
the natural language query, several works [5, 11] used LSTM [12], which is widely considered as
the default model for handling sequence input such as languages [13]. However, [1] presents a very
interesting finding that a simple bag-of-words (BOW) model may suffice for some particular types



of tasks and is even able to outperform some of the complex LSTM frameworks [11, 7]. We hence
chose to start with this simple implementation to set a performance baseline.

2.2 Language Understanding

Understanding the language query is one of the two pillars of VQA, towards which various ap-
proaches have been explored. In addition to LSTM [5, 11] and BOW [1, 2], [14, 15] use 1D CNN
to extract information from query based on fixed context windows, which provides superior perfor-
mance under certain settings.

2.3 Attention

Using language input to spatially attend the image has been proved to be effective for VQA tasks [5,
11, 16]. Moreover, multi-step or hierarchical approaches to aggregating spatial attentions have been
adopted by works such as [17, 6, 15, 11]. [17] uses a multi-hop attention scheme; [15] follows the
word-phrase-sentence hierarchy to obtain attention at different granularity separately; [6] recursively
refines the attended representation by stacking attention layers. [11] takes one step further to explore
more flexible network configuration by adjusting network layout based on a language parser. In this
project, we follow the approach in [6] for its visual interprebility and relatively shorter training time.

3 Approach

3.1 Bag-of-Words

We implemented a baseline model following [1, 2], where the textual input and the image are each
represented by a vector. The image is encoded using the layer 4 of ResNet101 [4]. The question
is concatenated with each of the four candidate answers to get four set of language inputs; for each
set, words in the question and the answer are first embedded using GloVe [3], then aggregated as
a fixed-size textual vector representation using averaging bag-of-words (BOW) model. Then, the
textual vector is concatenated with the visual encoding, and a three-layer multi-layer perceptron
(MLP) will take in the concatenation and produce a score representing the correspondence between
the textual vector and the visual encoding. The candidate corresponding with the highest score is
output as the prediction.

32 LSTM

Starting from the above baseline, we gradually add complexity to the model to produce more so-
phisticated outputs. The first step is to replace the BOW model with a LSTM [12], which has
demonstrated strong abilities in handling language inputs. The rest of the network remains the same
as in the BOW, and the system architecture is shown in Figure 1.

3.3 LSTM with Spatial Attention

We further experimented a stacked attention scheme following [6], where the attention gets refined
recursively in different passes of the attention layer. The visual representation of the image is now
changed from a vector in v; € R?04® (o a three-dimensional representation in vspatia, € R2048X7X7,
where 7 X7 is the spatial resolution of the visual representation. We first flatten the three-dimensional
representation to a matrix vy € R2048%49 where 49 is the number of spatial locations (i.e. 49 =
7 % 7). The text input is then embedded to R3%° using a LSTM as defined above, then an embedding
layer will embed this 300-dimensional vector to a vector v;, € R2%4® in the common embedding
space as the visual encoding as each spatial location. vy, is then used to attend vy at each location,
resulting in a spatial attention vector p; € R*°. A single vector representation v for the image is
produced as the weighted sum of the spatially attended visual representation, and is added with the
textual vector v, as the input for the next attention layer.
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Figure 1: Architecture that uses MLP to produce correspondence scores from concatenated
visual and textual encoding, where BOW or LSTM is used as language model.

Formally, at the k;, attention layer, the network computes:

ha = tanh(W[kUI @(quprev +b1))
Pk = softmax(Whha + b%)
y 1
vf =Y phv .
u= v~’; + Uprew
Where WF WF € Ririaaen*2048 map the visual and language encoding to a hidden embedding
space of dimension dp;44en (a tunable hyperparameter), and W}; € R1%dnidden maps each hidden

vector to a score which is then turned into attention probability by softmax. For the first attention
layer, upye, iS set as vy, the language encoding.
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Figure 2: Architecture for stacked image attention using language guidance. The text encoding
is used to generate an attention over spatial locations of the visual representation, where a visual-
lingual encoding is produced, and can then used to calculate the next level of attention. The total
number of levels is a hyperparameter we can set. The visual-lingual encoding of the last level
will be used to produce the image-textual correspondence score by passing through a multi-layer
perceptron, which is omitted in the figure.



4 Experiments

4.1 Dataset

We use Visual7W[5] Telling dataset, which contains 69817 questions for the training set, 28020
questions for validation set, and 42031 questions for test set. Each question is one of the 6 Ws (i.e.
what, where, when, who, why, and how) and is paired with 4 candidate answers, from which the
network learns to select the uniquely correct answer.

4.1.1 Preprocessing

For textual information, we use 300-dimensional GloVe[3] word vectors pretrained on 6 billion
tokens from Wikipedia 2014 and Gigaword 5 to represent words in the questions and answers, where
sentences are tokenized the same way the GloVe was trained. Unseen words are set to zero vectors.

To encode the image, we use ResNet-101[4] pretrained on ImageNet[18] as the feature extractor.
For single-vector representation of images, such as the case for the baseline BOW model and the
LSTM base model, we take the output of the average-pool layer, a 2048-dimensional vector. For
spatial attention, we take the representation before average pooling to preserve spatial information,
which is a 2048 x 7 x 7 feature map for each image.

4.2 Evaluation Metrics

We compute the fop-1 accuracy as the performance metric, which is defined as the percentage of
correctly answered questions.

4.3 Results

4.3.1 Overall Results

To train a better performance model, we spend a fair amount of time on hyperparameter search
regarding 1) single-directional or bi-directional LSTM, 2) number of layers of LSTM, 3) hidden
dimension of LSTM, 4) learning rate, 5) batch size, 6) dropout rate, and 7) value for weight decay
(i.e. L2 regularization). Figure 3 shows the hyperparameter search for LSTM hidden dimension,
dropout rate and L2 regularization.
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Figure 3: Hyperparameter values vs. validation accuracies

We find that the single-directional LSTM with 1 layer, 400 hidden dimension, a dropout rate of 0.2,
weight decay equal to 107>, batch size 128, and a learning rate of 10~° using an Adam optimizer
[19] yields the best results. With the appropriate hyperparameters and feature selections, we report
the test set accuracies of our 3 models in Table 1.

Our LSTM base model has the best performance, which is 11.2% higher accuracy than the Visual7W
baseline [5]. Despite its simplicity, our BOW model is able to outperform the baseline by 9.5%. Our
LSTM with spatial attention is just a little lower than the LSTM base model but very close. Contrary
to our expectation, stacked spatial attention does not give superior performance over LSTM, which
we will analyze in section 4.3.6.



Table 1: Accuracy for different models across question types, using Question + Answers + Image
and trained with BCE loss

Model What | Where | When | Who | Why | How | Overall
Visual7W baseline [5] | 0.515 | 0.570 | 0.750 | 0.595 | 0.555 | 0.498 | 0.556
BOW 0.585 | 0.694 | 0.797 | 0.673 | 0.566 | 0.511 | 0.609
LSTM 0.584 | 0.719 | 0.803 | 0.684 | 0.593 | 0.526 | 0.618
LSTM-Att 0.560 | 0.691 | 0.800 | 0.660 | 0.590 | 0.512 | 0.597

4.3.2 Image Feature as Input for LSTM

We also explore the option of using image feature vector as the first token in the input sequence of
LSTM, along with other QA word tokens. This approach is proposed in Visual7W[5], but it does not
improve the performance of our LSTM model - with an accuracy of 0.599, versus 0.618 without the
image feature. We think the reason is since the image feature is already used, together with the last
LSTM hidden state, as the inputs to the MLP, having an extra token representing the image at the
beginning of the LSTM input sequence does not provide more useful information, and may make
the model more prone to overfitting as witnessed by comparing the training and validation accuracy,
which explains the reduced performance.

4.3.3 Ablation Study on Features

As an ablation study and to better understand the model, we are interested in learning how much
information comes from the visual component. To verify this, we take away the image input, and let
the model learn from only the textual input. We then further remove the question, to see how much
prior information the candidate answers contain. The results for both BOW and LSTM models are
reported in table 2.

Table 2: Accuracy with different features (BCE loss)

Model Feature | What | Where | When | Who | Why | How | Overall

Visual7W baseline [5] | Q+A+I | 0.515 | 0.570 | 0.750 | 0.595 | 0.555 | 0.498 | 0.556

A 0.456 | 0.547 | 0.756 | 0.611 | 0.480 | 0.490 | 0.507
BOW Q+A 0.528 | 0.582 | 0.776 | 0.646 | 0.548 | 0.530 | 0.562
Q+A+I | 0.585 | 0.694 | 0.797 | 0.673 | 0.566 | 0.511 | 0.609

A 0474 | 0578 | 0.767 | 0.649 | 0.556 | 0.489 | 0.530
LST™M Q+A 0.528 | 0.587 | 0.782 | 0.648 | 0.564 | 0.531 | 0.564
Q+A+I | 0.584 | 0.719 | 0.803 | 0.684 | 0.593 | 0.526 | 0.618

Interestingly, we find that both BOW and LSTM outperform the baseline model in [5] when using
language features only, further explaining why adding image as the first input of the LSTM model
does not help, which matches our observation of getting reduced performance when adding image
to the input of LSTM.

Moreover, the question type "how” seems to be an outlier for both models. Questions with type
“how” are predicted more accurately without the image information available. There are two obser-
vations that may explain this. One is questions asking about the quantity of objects in the image,
such as "how many” like the question on the left in Figure 4. Neither our base models nor the atten-
tion model is able to handle this type of counting problem decently. The other type of error is about
more abstract concepts involving relatively complex reasoning, which may rely on information be-
yond visual clues in images, such as the example on the right in Figure 4.



Q: How many cats are in Q: How do you get there?
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) Take a plane there.
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Figure 4: Examples of "how” questions which the model may fail to answer: counting (left) and
information outside image (right).

4.3.4 Loss

The above experiments are performed using Binary Cross Entropy (BCE) Loss. We also experi-
ment with training our BOW and LSTM models using Ranking Loss, with the intuition that Ranking
Loss may focus more in capturing the relative relationships between answers, which correspond di-
rectly to the performance metric used in this task. However, the results show that the model actually
performs better with BCE (see Table 3). This may be because the nature of how the question and
answers are formed in this dataset — the correct answer does not often have a relative relationship
with the incorrect ones. In most cases, the incorrect answers are utterly wrong and thus BCE loss
would suit better.

Table 3: Accuracy with different loss (Q+A+I)

Model | Loss | What | Where | When | Who | Why | How | Overall
BOW BCE | 0.585 | 0.694 | 0.797 | 0.673 | 0.566 | 0.511 | 0.609
Rank | 0.515
BCE | 0.584 | 0.719 | 0.803 | 0.684 | 0.593 | 0.526 | 0.618
Rank | 0.553 | 0.666 | 0.769 | 0.658 | 0.576 | 0.535 | 0.591

LSTM

4.3.5 Fine-tune Word Embeddings

Fine-tuning word embeddings is a usual practice in lots of NLP tasks. We want to see if it helps
improve our model accuracy, so we train our LSTM model with fine-tuning word embeddings on the
pretrained GloVe word vectors and without. However, we observed a lower test accuracy of 0.5541
for fine-tuning, compared to 0.618 without tuning.

As seen in Figure 5, the six question words which are highlighted in circles have been moved drasti-
cally. Before fine tuning, the question words are close, which makes intuitive sense since they are all
question words. After fine-tuning, the six questions words are scattered, which indicates the model
is learning to distinguish the question types and possibly gaining information just from the question
types. Specifically, for where and who questions, one can often get a good answer by paying atten-
tion to specific objects or regions of the image. For when and why questions, one may have to look
for context in the entire image. What and how questions are even more involved that require deeper
semantic understanding and complex reasoning.

On the other hand, this may also suggest that the word vectors may be moved around too much,
which is not desirable considering how small the training set is: there are only around 600k words in
the training set, whereas the GloVe vectors were originally trained on over 6 billion tokens. We posit
the fact that our training set is not large enough to provide stable update to the word embeddings
may be the reason for the lower accuracy.

4.3.6 LSTM with Spatial Attention

In figure 6, we visualize the attention vectors from different layer of the stacked spatial attention
network.

As can be seen in the heatmaps, incorrect answer candidates often produce heatmaps that do not
make intuitive sense, while heatmaps from correct answers are much more interpretable (e.g. the
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Figure 5: Word vectors for the six question words and 200 randomly sampled words, without (left)
and with (right) fine-tuning. On the figure without fine tuning (left), the six question words are
closely clustered together, whereas after fine-tuning (right) on text inputs in the training set, the
question words are separated into 3 clusters, with where and who close to each other at the top,
when and why on the right, and what and how at the bottom.

Q: What are they about to cut? Q: What activity is being performed here?

Wedding cake. The vegetables. The fruits. The meat. Skateboarding.  Snowboarding.  Skiing. Sledding.
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Figure 6: Spatial attention represented as heatmap. The first row are the original images, the second
row are heatmaps for attention from the first attention layer, the third row are heatmaps from the
second attention layer, and the last row are heatmaps for the combined attention (i.e. sum of first
and second layer).

focus on the cake in the image on the left in figure 6, and the focus on the person in the image on the
right.) There are also mainly two interesting patterns between heatmaps from different layers. On
the one hand, the second layer sometime helps group scattered attentions in the first layer, similar to
smoothing. On the other hand, there are examples where the first attention layer only focuses on part
of the area of interest, and the second layer shows complementary activation, resulting in a decent
combined attention.

However, the overall performance of the stacked spatial attention model is not as good as the LSTM
base model. To understand the characteristics of the model, we compare examples where exactly
one model gets the correct results. Out of the 38703 examples, LSTM base model outperforms the
attention model on 3958 of them, while attention model outperforms LSTM base model on 3150
of them. Since LSTM base model does not offer easy features for visualization, we select some
examples where the attention model outperforms the LSTM base model to understand its strength.
Based on the examples in figure 7, it seems that the attention model is able to better pick up nuances
than the LSTM base model. We do not find obvious error type from the 3958 examples; together



with the training and testing performance, we hypothesize that the inferior performance may be the
results of lack of model tuning due to limited time, since spatial visual features are around 50 times
larger than single vector representation and thus takes much longer to train. Therefore, we expect
the stacked attention model to work better with better hyperparameter search, which we leave as
future work.

Q: Who is working on Q: Where are the pink  Q: What is the woman Q: What is the woman

the wall? circles? in brown eating? doing?
A: an electrician. A: at the end of the A: an apple. A: buying vegetables.
frog's smile.
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Figure 7: Examples where the stacked attention model outperforms the LSTM base model.

5 Conclusion

In this project, we explored three models, BOW, LSTM and LSTM with spatial attention, by in-
crementally adding complexities, and are able to achieve significant performance gain compared to
the baseline in [5]. We used ablation study and visualization tools to understand the contribution of
features and model designs, and present interesting findings during our experiments.

As for future work, we would like to add text attention to our LSTM model, which is proven to be
effective in [15]. We would like also like to perform a more thorough hyperparameter search for the
stacked attention model, including the number of attention layers. Using finer image feature maps
may also help improve spatial attention, for example, use 14 x 14 x 2048 instead of 7 x 7 x 2048.
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