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Abstract

This project applies deep learning with the Bi-Directional Attention Flow
(BiDAF) network to train a model for the machine comprehension task on the
Stanford Question Answering Dataset (SQuAD). We implement the BIDAF model
that represents the context with character-level, word-level, and contextual-level
embeddings and utilizes the bi-directional attention flow to capture the interac-
tions between context and query. We experimented with exponential moving aver-
age and conducted hyperparameter tuning. During the evaluation stage, we made
the answer-span prediction by searching the pair of start and end positions with
the highest joint probability. Our single model achieves competitive results of
75.594% F1 score and 65.299% EM on the test set.

1 Introduction

Machine comprehension (MC) of text is a challenging task that aims to extract information
from a given context in response to a given query. As a benchmark task to demonstrate natural
language understanding, machine comprehension has gained significant popularity within the
natural language processing community. The importance of this task also closely relates to its
wide applications. Various industries are paying close attention to artificial intelligent agents with
machine comprehension capability, and have applied the cutting edge technology to their current
service systems, from legal service support to financial trading.

Since the release of the Stanford Question Answering Dataset (SQuAD)[1] in 2016, rapid
progress has been made on training end-to-end models for the machine comprehension task. In
particular, neural attention, a mechanism that allows the system to focus on more relevant parts of
the information, has led to major advancements. Among these works, the Bi-Directional Attention
Flow (BiDAF) model introduced by Seo et. al.[2] achieved benchmark scores on the SQuAD
leaderboard, and since then has attracted certain research attention.

In this project, we re-implement the BiDAF network, including the character and word em-
bedding layers, the contextual embedding layer, the bi-directional attention flow layers, the LSTM
modeling layers, and the softmax output layer. We experiment with the exponential moving average
technique and conduct hyper-parameter tuning. During the evaluation stage, we make the start and
end positions prediction by searching the pair of the start and end positions with the highest joint
probability. Our single model achieves competitive results of 75.594% F1 score and 65.299% EM
on the test set, and 75.295% F1 score and 64.702% EM on the development set. We also provide
an qualitative analysis on the model’s performance by illustrating several question-answer pairs
and visualizing the attention mechanism. Al last, motivated by the error analysis, we identify the
current model’s limitations and suggest several directions for further research.



2 Related Works

Before the end-to-end neural network has gained its popularity in solving machine comprehension
task, the task was mainly approached by feature-based systems. Richardson et. al[3] introduce a
model features including bag-of-word and word distance. Smith et al.[4] apply augmented bag-of-
word features. As for deep learning methods, in 2015, Hermann et. al[5] embed sentences into
vector space to train LSTMs. When it comes to neural attention mechanism, Wang and Jiang[6]
utilize match-LSTM to account for the different importance of words in a passage corresponding
to a given query. Xiong et al.[7] propose dynamic co-attention that involves a two-way attention
between the context and the question. Wang et al[8] match the context against the question from
multiple perspectives.

3 Data

3.1 Dataset Description

Stanford Question Answering Dataset (SQuAD) consists of 100,000+ question-answer pairs on
500+ Wikipedia articles where the answer to every question is a span taken from the corresponding
context[1]. To better understand our dataset, we examine the data by plotting the lengths of context,
question and answer, as well as the word length in each sentence from the dev set (Figure 1). From
the length distribution, we identify the best choices for the hyperparameters max-context-length,
max-question-length, max-answer-length, max-word-length. We also examine the distribution of
different question types characterized by “what”, “who”, “how”, “when”, “which”, “where”, and
“why” (Figure 2). As shown in the graph, the “what” type of question accounts for the largest

proportion in the dataset.
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Figure 1: Development dataset length analysis

3.2 Problem Formulation

Machine comprehension of text typically contains a context C and one or many question Q, AND
requires the model to apply information form C to predict answer A to its corresponding question
Q. For SQuAD dataset, questions are problems without multiple choices, and the answers A are
continuous sub-spans of C. Thus, the task is to search for direct answer excerpts from C instead of
synthezing answers.



Distribution of Question Types in Development Dataset
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Figure 3: BiDirectional Attention Flow Model Architecture

4 Model

4.1 Model Architecture

Our model has five components: embedding layer, which embeds both context and question words;
RNN encoder layer, which encodes embedded words into hidden states; attention layer, which
combines context and question representations, modeling layer, which encodes context with the
information of question, output layer, which gives predicted distribution for answer’s start and end
positions. Below we demonstrate each of the five components.

Embedding Layer

e Character Embedding Each word is padded to have the same length W, and each charac-
ter is embeded into a vector of length L;. Note here the embeded character vectors are also
model parameters. We firstly represent a word with a matrix of size W x L;. Then we use
one-dimensional convolutional neural network with L; in-channels and L, out-channels to
get a matrix of size d. x L,. Finally we take the maximum along out-channels and represent
each word with a character embedding vector of length d..

¢ Word Embedding Pre-trained GloVe vectors are used with embeded size d,, = 100.

We concatenate the character and word embeddings vectors to represent each word in contexts and
questions.



RNN Encoder Layer Sequences in contexts and questions are padded to have the same lengths
N and M. The embeded sequences are x = {x1,...,xy}andy = {y1,...,ynm } for contexts and
questions respectively, and are fed into a 1-layer bidirectional LSTM to acquire the hidden states.

{ct,&1,...,cn, &8} = LSTM({x1,...,%xn})

{m)vﬁvvq—l\/h@}:LSTM({YL7yN})

where EE, (TJ> are forward hidden states of contexts and questions and f:_z-, 61_] are backward hidden
states of contexts and questions. The output of this layer is the concatenation of forward and back-

ward hidden states.
¢ = [€; €, q; = [@; G-

Attention Layer We first calculate the similarity matrix A and then get the context-to-question
attention and question-to-context attention.

e Similarity Matrix 4;; = Attn(c;,q;) = wa[ci,qj,¢; o q;] where w, € R3is a
similarity weight vector.

e Context-to-Question Attention This attention allows us to get a question-aware repre-
sentation of each individual context word. For every context word ¢, we get a similarity
distribution with respect to question words: D; = softmaz(A[i,]) € RY. Then the
question-aware representation of context word i is ¢; = 3, D;(j)a; € R4

¢ Question-to-Context Attention This attention allows us to get a question-aware represen-
tation of the whole context. We firstly take the maximum similarity with question for each
individual context word i: s = {s;} = {max(A[i,])} € RY, which is later softmaxed
to get a distribution D, = softmaxs. Finally the whole context can be represented as a
vector ¢ = ZZ D.(i)c; € RY, the weighted sum of context words based on its relevancy
with question.

We get a blended representation by concatenating the above vectors:
a; = [c;;C4;C;C oyl
Modeling Layer The blended representations of context are fed into a 2-layer bidirectional LSTM

network to encode the context with the information of question. Similarly for the RNN Encoder
layer, we concatenate the forward hidden states and backward hidden states.

{‘717"'a‘7N} = LSTM({alv"'vaN})
{V17"'avN} = LSTM({‘N,lav‘NIN})
The final blended representations are as follows:
b; = [a;; vi].
Output Layer In this layer we output two distributions for the start location and end location

in the contexts. Feed the final blended representation b; into a fully connected layer to score the
context location 7, and then get a distribution.

; T . T
scorestart(1) = WipariDi + Ustart, SCOT€end(1) = Wi, ybi + Uend

Dstart = softmaz(scoresiart) € RY,  pend = softmaz(scorecng) € RY.

Loss Cross entropy loss is used here to characterize our model accuracy. If the ground truth
locations are (5197 [¢"d ¢ [N], then the loss is defined as follows:

lstart) lend)

loss = —10g pstart( — log pena(

Prediction We make predictions by maximizing the joint probability of ps¢art(4)pend(J)- Besides,
we use the heuristic that 0 < lopg — lstart < lengnswer, Where lengpswer 18 a predefined model
parameter that determines that longest answer length. Therefore, the predicted span (pl*tet, pl¢"?)
is chosen by:

(plstart7plend) = argmax(; ;j),0<j—i<lengnswerPstart (Z)pend(])

which can be calculated linearly by going through all feasible (i, j) locations.



Dev Set Test Set

Model F1 EM | F1 EM
Baseline 43.6 | 343 | - -

OurBiDAF1 724 | 622 | - -

OurBiDAF2, joint-pred 73.7 | 62.7 | - -

OurBiDAF3, joint-pred, char-embed | 75.3 | 64.7 | 75.6 | 65.3
BiDAF - - 77.3 | 68.0
Dynamic Coattention - - 75.9 | 66.2
r-net - - 684 | 77.5
Human Performance - - 91.2 | 82.3

Table 1: Result comparison among different models (single) on Dev and Test set

4.2 Training Details

We train 12 epochs with the initial learning rate 0.003, dropout rate 0.2, and batch size 36. We also
decrease the learning rate by a factor of 10 after the 5th epoch. We have also experimented with
exponential moving average, which, however, does not improve the model’s performance.

S Results and Analysis

5.1 Results

Our model achieves F1 score 75.29 and EM 64.70 on the development set, and F1 score 75.59 and
EM 65.30 on the test set. We provide a comparison of our models with the state-of-art models in
(Table 1), in which OurBiDAF1 refers to the use of bidirectional attention flow, joint-pred refers
that we do predictions by maximizing the joint start-end position probabilities and char-embed
refers to the use of character-level embedding.

This table also shows the incremental improvement of each implementation. The implementation
of the bi-directional attention flow gives the most significant improvement on both F1 and EM. The
joint probability maximization method improves the F1 score by 1.3 point by tackling the situation
when the probability of independent position maximization is high but the joint probability is low.
For example, before we implement the joint probability prediction technique, the model could give
predictions where the end position is before the start position. As for the character embedding, this
method handles the out-of-vocabulary words and increases the F1 score by 1.6 point.

Below we show an example of context-question-answer triplet, in which the model is able to produce
the correct answer to a complex question, which further demonstrates the model’s effectiveness.

Example 1:

e Context: In time, Kublai Khan ’s successors lost all influence on other mongol
lands across asia, while the mongols beyond the middle kingdom saw them as
too chinese. Gradually, they lost influence in china as well... Uninterested in ad-
ministration, they were separated from both the army and the populace, and china
was torn by dissension and unrest.

e Question: Why did Kublai ’s successors lose control of the rest of the mongol
empire?

e Prediction: The mongols beyond the middle kingdom saw them as too chinese
e Answer: The mongols beyond the middle kingdom saw them as too chinese

5.2 Attention Visualization

We visualize the similarity matrices for context-to-query attention in figure 4. Note that the two ex-
amples have the same context but different questions. The red boxes mark the true answer positions.
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Figure 4: Attention Visualization

Question Type | F1 EM
What 64.23 | 49.53
When 81.28 | 68.32

How 7591 | 54.20
Who 74.82 | 67.05
Where 64.06 | 64.10
Which 75.29 | 50.58
Why 53.63 | 17.30

Table 2: Influence of Question Type on Dev-set Accuracy

As they are consistent with the brightest attention logits in the similarity matrices, the visualization
illustrates that our model is able to effectively attend to the correct locations of the context when
given different queries.

5.3 Model Performance by Attributes

5.3.1 Question Type

We examine our model accuracy on the development set, and calculate the average F1 and EM
scores for seven different question types: What, When, How, Who, Where, Which, Why. Table 2
shows that our model has better performances on When and Who, while performs poorly on Why
questions. This could be explained by the fact that Why questions require a deeper level of context
comprehension, as the relationship between context and query is not as direct as those of other types
of questions.

5.3.2 Context/Question/Answer Length

We also examine our model’s performance with respect to context/question/answer length. As seen
in Figure 5, we find that the context and answer lengths do not exert significant influence on the pre-
dictive accuracy, while for the answer length, the longer the true answer is the lower the evaluation
metrics are for our model. Similar to the analysis of question type, the queries with long answers
are often more complicated and therefore require the model to gain a deeper comprehension of the
context and characterize a longer term of dependency.

5.4 Error Analysis

We provide a qualitative error analysis by comparing some incorrect prediction to the ground truth.
We find that the errors can mainly be categorized into the following types.
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Figure 5: Influence of Context/Question/Answer Length on Model Accuracy in the Development
Set

5.4.1 Long Predicted Answers

Example 2:

e Predicted Answer: Many governments also wanted to increase their independence
and strengthen legislation to limit foreign ownership of broadcasting properties

e True Answer: Legislation to limit foreign ownership of broadcasting properties

Example 2 shows a common problem of our model that the prediction is longer than the true answer
but with roughly the correct position. On one hand, it shows that our model is able to abstract and
extract context information and correctly locate the answer when given a query. On the other hand,
it also indicates that the model does not have the full capability to understand the problem, since the
redundant parts either show no logical connection with the query or do not contribute to the query
to a certain extent.

5.4.2 Imprecise Answer Boundaries

Example 3:

e Predicted Answer: Desire to encourage consensus amongst elected members

e True Answer: Encourage consensus amongst elected members

This type of error is similar to the one shown in Example 2 but is less severe. One possible reason
is similar to that of the Long Predicted Answers error - the model does not have good enough
understanding of the context and the question. However, this problem could also be caused by
personal preferences of human testers who provide the question answers. And it is difficult for a
model to capture this type of nuanced difference.



5.4.3 Same Type Wrong Answer

Example 4:

e Context: The revived series has received recognition from critics and the public,
across various awards ceremonies. It won five bafta tv awards, including best drama
series, the highest-profile and most prestigious british television award for which
the series has ever been nominated.

e Question: What was the most revered award that doctor who has won?
e Prediction: British television award

e Answer: Best drama series

This type of error might be caused by the mechanism of attention. Note that the predicted answer
and the true answer are both sound and serve the same functionality as they are of the same type as
short phrases. However, it is more likely for attention to focus on “British television award” instead
of “best drama series”, because “most prestigious” and “award” in context are more similar to “most
revered award” in the question while “best drama series” are farther.

6 Conclusion and Future Studies

In this project, we implement the BiDAF model that utilizes multiple-level embeddings and the
bi-directional attention flow with both context-to-query and query-to-context. We modify the
prediction mechanism during the evaluation stage by searching the pair of start and end positions
with the highest joint probability. Our single model achieves competitive results of 75.594% F1
score and 65.299% EM on the test set, and is able to attend to the correct context locations given
queries.

Motivated by the error analysis, we suggest several directions of further research. Firstly,
even though the model is able to extract relevant information from contexts in order to answer
questions, it does not perform as well when deeper context comprehension or logical reasoning are
required. Therefore, in order to tackle more complicated context-query pairs, we could incorporate
multiple hops of the attention layer. Alternatively, we could apply iterative reasoning - conduct
reasoning multiple times to enhance context comprehension. In addition, we could use enhanced
gated mechanism in order to improve the longer-term dependencies. Moreover, we could improve
the loss function by combining the F1 and EM scores to the cross-entropy loss, thus establishing
a more direct connection between the loss function and the evaluation metrics. From this line
of thought, we could incorporate the idea of reinforcement learning in solving the machine
comprehension task.
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