Colors in Context: An Implementation

Alec Brickner
Stanford University
Palo Alto, CA 94305
abrickne@stanford.edu

Abstract

Colors tend to be defined by the contexts in which they occur. A yellowish-green
may be interpreted as a “yellow” when there are darker greens nearby, but that
same color might be interpreted as a “green” when there are sharper yellows
around it. We implement a model defined by Monroe, et al. [1] to choose a color in
a context given a description, which utilizes the Rational Speech Acts framework
with an LSTM at the base level.

1 Introduction

In their paper Colors in Context: A Pragmatic Neural Model for Grounded Language Understanding;
Monroe et al. [1] build a model that learns to choose a color out of a set of 3, given a description of
the correct color in context of the other two colors. The motivation for this task is that sometimes,
colors do not occur in isolation. It may be useful to have a model that can output a color based on
a description, but relative to other colors, people might describe colors differently. What might be
”blue” in isolation could become “’light blue” when a darker blue is placed next to it. Further, it could
become “the middle shade of blue” when both a lighter and darker shade of blue are placed beside it.
I have implemented the model from the paper myself, and will discuss the details of implementation
in this paper.

2 Task Description

The basic goal of the task was mentioned previously; I will go into it in further depth here. Data
was collected by Monroe et al. [1] using a Mechanical Turk HIT that paired 2 people together. Each
person was assigned a role, which was either ”speaker” or listener”. Both the speaker and listener
were presented with three colors, and one of these three colors was specified to the speaker. The
speaker’s goal was to describe this color to the listener in such a way that would allow the listener to
choose that color correctly. The result of this data collection, publicly available on the Computation
and Cognition Lab’s website, is the data to be used in our implementation.

3 Implementation

Because of the setup, in which we have a speaker talking to a listener who must choose between
options, the approach used to solve this task is the Rational Speech Act framework [2] [3]. The
intuition behind this framework works as follows. Suppose we have a speaker, S, and a listener, L.
S makes an utterance, and L must try to understand what it means. L, assuming that S is speaking
rationally, knows that S is saying something which is meant to get L to understand the true meaning
of the utterance. She believes that S is considering a potential set of utterances, and imagining how
the listener would respond to each. In this way, the listener is thinking about the speaker, who is
in turn reasoning about the listener. This could potentially be recursive, but most implementations



You are the speaker.
‘Send messages (o tell the listener which object is the target.

You: the light orange one

Figure 1: The HIT as seen by the speaker. Image from the website of the Computation and Cognition
lab.

(including this one) stop here. Monroe et al. choose to call the top-level listener (the pragmatic
listener) L, the speaker .S7, and the base-level listener L.

Usually, Ly is implemented with a fixed vocabulary, and might use a tool such as basic, rule-based
semantic parsing in order to understand the sentence. In practice, however, this does not scale -
implementing RSA either requires a high-level semantic parser, or another tool that allows for a
wide variety of sentence types. Monroe et al. use a neural net at the base layer, which lets any
sentence work as a listener to the input.

Additionally, note that the speaker, reasoning about the listener, must consider the listener’s pre-
dicted response over a set of sentences. In the standard RSA algorithm, this is usually a distribution
over results from a fixed set of potential utterances. However, in practice, we don’t have a fixed set
of sentences - we have a speaker, who is thinking about all potential utterances they might produce.
To that end, Monroe et al. use a base speaker neural net, Sy, which produces text based on a color.
S takes samples from this network by using the color it wants the listener to guess, and then runs
those utterances on L to see what it will think in regards to those utterances.

3.1 Base Listener

The base listener is an LSTM, which takes in an utterance as input and outputs a probability dis-
tribution over the three possible colors. See Figure 2 for a visual representation. Each input word
is sent through an embedding layer (initialized using a normal distribution N(0, 0.01)), which is of
size 100. After this layer is the recurrent LSTM layer, which is bidirectional. The LSTM cell is
implemented as in [4], which includes the memory cell in the calculations of each gate, and has a
trainable weight vector for the memory cell input of each gate. Each weight matrix is initialized
using the normal distribution N(0, 0.1), while bias vectors are all initialized to 0. The size of this
layer is 100. Note that while padding is implemented, with the total length of the recurrent layer
being set to the length of the longest input in the training set, masking is not implemented. Even if
the input is just a single word followed by a large amount of padding, the network goes all the way
until the end of the input, counting every pad input. This is likely to be important because the length
of the input sentence provides valuable information - for example, longer sentences might mean that
the correct color is more difficult to guess (shown to be true by Monroe et al.)

The final hidden states of each LSTM direction are concatenated together, creating a 200-cell vector.
We then multiply this vector by two weight matrices to get a size-54 vector, p, and size 54x54 matrix,
), parameters of a quadratic form. The weight matrices are initialized using Xavier initialization; a
bias, initialized to O, is added to u, while a bias that is initialized with the identity matrix is added
to 2. p and X parameterize a Gaussian distribution, where y is a vector of expected values of the
distribution, and ¥ is a covariance matrix. (Monroe et al. note that this is not guaranteed to be a
Gaussian distribution, but it is in about 95% of cases.)

The labels for the Ly network are three vectors of size 54, each encoding a color. To get these
vectors, the initial RGB values for each color are Fourier-transformed, described in [5]. (The code
to do this was taken from the codebase of [1].) Each of these vectors is combined with ¢ and o, and



Softmax

Figure 2: The base listener model. It takes in a sequence of words, passes them through a bidi-
rectional LSTM, and computes the parameters of a quadratic form. Each color is scored with this
quadratic form; the softmax of these scores is the output. Original figure from [1], with modifica-
tions added to show bidirectionality.

the quadratic form is calculated to produce a score as follows (taken from [1]):

score(f) = (u— f)2(p— f)" (1)

The results of this equation for each of the three colors are passed into the softmax function, and
from there, the cross-entropy loss is taken with the label of the correct color.

Softmax %

3.2 Base Speaker

Fully connected |

Figure 3: The base speaker model. An encoder LSTM takes in three colors, and the decoder LSTM
outputs (or scores the likelihood of) a sentence. Figure from [1].

The base-level speaker consists of two LSTMs - an encoder and a decoder. The encoder takes as
input the three context colors. The decoder is slightly more complex, as its input depends on the
purpose for which Sy is being used; we will get to it in time. The colors, which are expressed in HSV
(in contrast to the listener’s RGB), then Fourier transformed to a 54-dimensional representation, are
input into the encoder LSTM, one at a time. As in [1], the correct color is input last. The LSTM cell



is the same as it is in Lg. After all three colors are input, we take the last hidden state for use in the
decoder. Call this state h.

We will first discuss the overall layout of the decoder. At each time step, the decoder takes in a single
word, concatenated with the encoder’s final hidden state, h. The embedding matrix for the word is
initialized the same as it is in the base listener. The word/state pair is the input to the decoder LSTM
(which is unidirectional). The output is then sent through a weight matrix (size 100 x vocab_size,
initialized with Xavier initialization), and a bias of size vocab_size is added to this. We add a softmax
nonlinearity to this layer to give us a distribution over possible words. When training, we perform
cross-entropy loss on the softmax distribution and the one-hot encoding of the actual word for that
timestamp. Additionally, we perform masking here, so only words up to the end token contribute to
the loss (and, thus, gradient descent).

If we are using Sy to score an input, then at each timestep ¢, index ¢ — 1 of the input utterance is the
input word. (If t = 0, the input is the start token (s).) The output of this neural net is the softmax
distribution we got before. To score the input sentence, we perform the following: at each timestep,
find the probability corresponding the the word occurring at that timestamp. Stop when we see the
end token (\s). Multiply all of these probabilities together to get the score. This is used in L; in
order to determine which color of the 3 is the most likely to have produced the given utterance.

If we are using Sy to generate text, then after finishing a timestamp ¢, take a word from from the
distribution generated at the output layer. This word is the input word at timestamp ¢ + 1. Output the
sequence of words generated. This process is used in S; to generate possible utterances to produce
for each context color.

3.3 Pragmatic Listener

As discussed previously, this model implements the RSA algorithm. In order to implement this, we
have an Lo pragmatic listener and S; pragmatic speaker. These are not models, but they make use
of Sp and Ly. S; generates 8 utterances for each context color using Sy, giving us 24 utterances
in all. These utterances, along with the actual utterance u, are all sent through Ly, which tells
us the probability of each possible color for each utterance. We can then calculate the probability
distribution of S, given the outputs from L:
Lo (t]u)"

Sl(u|t) Zul Lo(t|u’)°‘ (2)
« allows us to soften the resulting distribution, in a way. It makes options of high probability lower,
and options of low probability higher. While this does not affect which output of Ly is the largest,
it is useful when the distribution itself is used, e.g. in ensemble learning. In [1], this value is set to
0.544.

We can calculate S; for every color ¢, telling us the likelihood that the speaker would have uttered
u, provided that the actual color was ¢. This gives us the distribution Ls:
S (ult)
Ly(tlu) = =———"— 3)
) =5 i)

3.4 Ensemble Models
Because Lg, L1, and Ly learns colors differently, they might be able to detect certain intricacies

in utterances the other listeners cannot. As such, we can blend these models together in order to
potentially get higher accuracies. This is done as follows:

La(tlu) oc Lo(t[u)Pe - Ly (tlu)' % @)
Ly (t|w) oc Ly (tu)? - Ly (tju)t P i
Le(t|u) o< La(t]u)? - Ly(t|u)' ™ ©)

In the original paper, these parameters are determined through a grid search. They find that the
best results are 3, = 0.492, 8, = —0.15, and v = 0.491. Our model results, however, are a little
different, and we find that different parameters work better for us here. Through direct variable
manipulation, we found that the parameters that work best are 5, = 0.465, 8, = 0.2, and v = 1.



Additionally, we find that a model blending L; and L, may prove useful. We define the following
two models:

Le(thu) o L (tfu)’ - Lo(tfu)'~? ™
Lea(tlu) o¢ La(thu)* - Le(thu) = ®)
©)

We find that the best ¢ is 0.3, and the best € is 0.78.

4 Training

The division of training data is exactly the same as in [1]. Data processing works in the same
way, too: for each round in the dataset, all the listener utterances are removed, speaker utterances
are concatenated together using the ’ ° character, and all words are set to lowercase. Next, the
words are tokenized in the following manner: punctuation is split off, though words with hyphens or
apostrophes are kept together. Sequences of dots or asterisks are also kept as single tokens. Further,
numbers (which may have a ’.” or ’/’, as well as a +/- sign) are single tokens. (Note that this
specific tokenizer was taken from the codebase of [1].) When preprocessing data for the listener, we
additionally split off the following word endings: er”, ”ish”, and “est”. These tokens are prepended
with a ”+” character. This process is not performed when preprocessing data for the speaker, since
the speaker must be able to produce full words - it should not be able to randomly say ”+ish”. When
preprocessing the training set, we also create a dictionary, mapping words to integers. This allows
us to encode our input as a sequence of numbers. However, for any word that appears only once in
the dataset, we replace it with ”(unk)”. When using this dictionary to map words to integers in other
datasets, we replace any word that is not in the dictionary with ”(unk)”.

In order to actually train the model, we perform the following. For the base listener, we take the
cross-entropy loss, and apply the ADADELTA gradient optimizer [6] with a learning rate of 0.2. In
the base speaker, we use the Adam optimizer [7] with a learning rate of 0.004. Using a batch size of
128, we train Lg, keeping track of the accuracy (defined as the number of times for which Lq(¢|u)
is the highest for the correct color ¢) on the development dataset. Whenever we reach a new highest
accuracy, we save the current weights. We stop training when it is clear that the model is overfitting,
and we can see that the accuracy on the dev set will not be able to achieve the same results it did
earlier.

Training the base speaker is a little different. Because it is difficult to determine accuracy of a text
generator, we define a listener L, as follows:
So(ult)
Ly () = == (10)
2 So(ult)

Like with Lg, the color we choose is whichever color gets the highest score here - in other words,
the color which is most likely to have produced the utterance u. Accuracy is calculated in the same
manner, and training continues until the model starts to overfit and accuracy begins to slip down-
wards. (We have experimented on minimizing loss on the dev set, and we find that the maximum
accuracy coincides with the mimimum loss.) While the paper uses a batch size of 128 for training,
we actually find that a batch size of 32 produces far better results, and so this is the batch size that

we apply.

S Results and Analysis

The highest accuracy that we were able to achieve on the development set was 84.42%. This was
from utilizing L5, our model blending L, and L.. On the test set, we were able to get 86.03%.
This increase would simply appear to be a natural difference in the level of difficulty in the datasets,
seeing as humans perform better on the test set. See Figure 4 for more information.

Unfortunately, we were not able to achieve the same results as the original paper. For one, we were
not able to match their accuracy on the base listener, Ly - they scored 83.3%, while we got 82.34%.
It is likely that this difference affected many other results, as the pragmatic listener relies heavily
on the base listener, as do the ensemble learners and their precise parameters. We are currently



Model | Dev Accuracy (%) | Perplexity Model | Test Accuracy (%) | Perplexity
Ly 82.34 1.57 Ly 84.31 1.50
Ly 82.06 1.53 Ly 83.61 1.48
Lo 82.36 1.56 Ly 84.47 1.50
L, 84.39 1.46 L, 86.01 1.41
Ly 82.40 1.54 Ly 84.58 1.48
L, 84.40 1.49 L, 85.99 1.44
L, 84.39 1.46 L 86.01 1.41
Lea 84.42 1.46 Lo 86.03 1.41

Human 90.40 Human 91.08

Figure 4: The results for both the development dataset and test dataset.

Model | Dev Accuracy (%) | Perplexity
Lo 83.30 1.73
Ly 80.51 1.59 Model | Test Accuracy (%) | Perplexity
Lo 83.95 1.51 Lo 85.08 1.62
L, 84.72 1.47 L 86.98 ‘ 1.39
Ly 83.98 1.50 Human 91.08
L, 84.84 1.45

Human 90.40

Figure 5: The results obtained by Monroe et al. [1].

unsure what differences in our models create this difference (if we did, we would have fixed them
by now). We were able to make multiple improvements to our score by searching through the code
of the original model, ensuring that every detail, such as weight initializations and LSTM cells,
were implemented in precisely the same manner. (For example, Lg is bidirectional - a fact not
mentioned in the original paper.) Even so, there remains a single percentage point of difference that
we were unable to eliminate. One notable difference in our results, however, is in the difference of
perplexities. Our Ly has a perplexity of 1.57, while perplexity of their model is 1.73. This indicates
that while their model tends to be more accurate, the probability distributions that they output tend
to lean less strongly towards the correct color. Perhaps if we were to find a way to relax our output
distributions, our model might be more accurate.

One major improvement on our end is in L;, the listener for the base speaker. Monroe et al. get
80.51% accuracy, while we are able to attain an accuracy of 82.06%. As stated previously, we made
sure that every detail in the logic of our models matched, and as such, we are unsure as to what
led to this difference. In their paper, Monroe et al. describe the base speaker as simply being a
generator, which always uses the word generated as an input to the next timestep. However, in the
context of L;, we use Sy to score our utterances - in other words, we want to find the probability
that the correct word was output at each timestep; in the next timestep, we always input the correct
word. This process is not described in the paper, but it appears to be done in their codebase. It
was also the approach which I initially found to be more intuitive - if we start outputting incorrect
words, then the probability of the correct sentence will be even lower, since later words depend on
earlier words. This actually may have contributed to the Sy generator leaning towards putting color
words at the beginning of utterances - since the beginning tends to direct the rest of the utterance,
examples that started with colors likely tended to score higher. (This may just be a result of a large
number of 1 or 2 word utterances, however.) One major departure from the original paper in training
So is the batch size. Monroe et al. use a batch size of 128, but we use a batch size of 32. This
ends up increasing our accuracy by a full percentage point (from around 81%), though even without
the decreased batch size, our accuracy is still significantly higher than theirs. It is the difference in
L, accuracies, I believe, that allows us to achieve 84.39% on the development set using L,. The
difference in increase between Lq and L, for Monroe et al. is 1.42%, while for us, it is 2.05%.

One issue on our end was that we were not able to get the increase from Ly to Lo that we expected,
since it was present in [1]. This was even more surprising, since our L; score meant that our Sy
modeled speech better than theirs did. However, this difference may be what caused our Ly model
to perform poorly. Sy might be good at modeling, but perhaps its speech generation skills may not



Accuracy of L_e2 on Possible Trial Conditions

N Le2

80 4

60

Accuracy

204

close far split
Trial Condition

Figure 6: Accuracy of Lo on the close, split, and far divisions of the development dataset.

be as good as those of Sy from [1]. This also may be due to L not being able to recognize speech
generated from a neural net in some cases. However, since neither of our base listeners were trained
on this type of data, this may not be the key difference. Rather, the difference in how our Sy models
act seems like the most likely suspect at the moment. This issue, I believe, led Lo giving us no
new information, meaning that Ly, the blend of Ly and Lo, did not help us that much. As a result,
the maximum value we were able to achieve with L. was equivalent to that of L,, since including
information from L; only lowered our accuracy. The introduction of L. and L.5, however, was able
to help us, if only marginally. This might be because our Lo was mostly equivalent to Lo, so we
gain very little new information from using it. If we had achieved a significant increase in the score
of Lo, then L, may have performed far better than it did here. Even a marginal increase in accuracy,
however, is nice to see.

One interesting area that we might look at is differences in close, split, and far trials. Far trials are
cases in which all colors are different from each other, split trials have the target color as similar to
one of the incorrect colors but different from the other, and close trials have all three colors similar
to each other. As one would expect, the accuracy of the model applied to far trials far exceeds that
of split trials, which exceeds that of close trials. But it might be interesting to compare the results
from our listeners to those of Monroe et al. On the development set, our L. model gets 94.34%
accuracy on the far set, 83.79% on the split set, and 74.96% on the close set. This can be seen in
Figure 6. Monroe et al., on the other hand, using their L. model, get about 94% on the far set, 84%
on the split set, and 77% on the close set. While our far sets and split sets have similar accuracies,
the most glaring difference is in our close sets. It would appear that their ability to handle close
cases is their strength, and gives them the better overall accuracy. This might be based in the base
learner, however. Their base learner gets a score of about 75% accuracy on the close set, while our
base learner’s accuracy on that set is 72.75%. If we are to improve our overall score, then, we may
need to focus on learning to solve close sets with the base learner.

6 Conclusion

While we were not able to exactly reproduce the results of [1], we were able to get reasonably close,
and made some interesting improvements on the side. The pragmatic listener, Lo, did not end up
being very useful to us (against our expectations), but the L listener ended up being very helpful
(again, against our expectations). It would seem that by learning from data in a different manner,
we can learn intricacies that might not be present when learning data in the normal matter (e.g. text



to color). Extending this concept to other machine learning problems may be an interesting concept
for future study.

References

[1] Will Monroe, Robert XD Hawkins, Noah D Goodman, and Christopher Potts. Colors in
context: A pragmatic neural model for grounded language understanding. arXiv preprint
arXiv:1703.10186, 2017.

[2] Michael C Frank and Noah D Goodman. Predicting pragmatic reasoning in language games.
Science, 336(6084):998-998, 2012.

[3] Noah D Goodman and Andreas Stuhlmiiller. Knowledge and implicature: Modeling language
understanding as social cognition. Topics in cognitive science, 5(1):173—-184, 2013.

[4] Alex Graves. Generating sequences with recurrent neural networks.  arXiv preprint
arXiv:1308.0850, 2013.

[5] Will Monroe, Noah D Goodman, and Christopher Potts. Learning to generate compositional
color descriptions. arXiv preprint arXiv:1606.03821, 2016.

[6] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.



