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Abstract

For this project, we explored different attention-based RNN architectures (DCN,
DCN+, and FusionNet), which tackle a machine reading comprehension (MRC)
task that consists of trying to construct a model that performs well on the Stanford
Question Answering Dataset (SQuAD). We pick certain components from those
RNN architectures to implement on top of the provided baseline model, and also
try some additional optimization and model tuning strategies. As a result of our
various additions and changes, on SQUAD, we are able to achieve a dev F1 score
75.3, EM 65.1 for our single model, and a dev F1 score 78.3, EM 68.4 for our
ensemble model consisting of 4 significantly different model architectures.

1 Introduction

In recent years, there has been a substantially increased amount of interest and advancement in
the area of machine reading comprehension (MRC). In particular, the publicly released Standard
Question Answering dataset (SQuAD) has spurred the development of many prediction models for on
the reading comprehension problem of Question Answering (QA). This dataset consists of 100,000+
question-answer pairs on 500+ articles, with a roughly 80% train-10% dev-10% test split[1]. One
way models can make predictions for this dataset is by learning from training examples in this dataset,
and then, given a context paragraph and question pair, being asked to come up with an answer that is
guaranteed to be a "span" of text in the given context paragraph. For some context paragraph and
question pairs, there may be multiple valid answers, since the answers are crowdsourced, and so both
a F1 and Exact Match (EM) metric are used to assess the performance of your model. One class
of models that has performed particularly well on this dataset are attention-based models, which
encapsulate a mechanism that helps the model only focus on the relevant portions of the context
paragraph (e.g., by making the context aware of the query) when selecting an answer span.

For this report, we explore and analyze existing attention-based architectures that perform well on
the SQuUAD dataset. We discuss our approach towards constructing our own model for prediction on
this dataset. We then move on to discussing the components from various architectures that we added
on top of the baseline, and also describe some extensions and modifications that we make. We then
discuss and analyze in detail some results that were obtained from prediction on the dev set.

2 Approach

Because our approach towards constructing a performant model involves re-implementing certain
components of recently published attention architectures for SQuAD, in this section, we will also
discuss the relevant literature and existing work corresponding to those models in some detail.

We start by introducing our neural architectures for machine comprehension on SQuAD. These
include: the full model of Dynamic Coattention Network (DCN) [2], the Deep Residual Coattention
encoder as discussed in DCN+ [3], and the FusionNet architecture in [4]. Extra extensions include:
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using better and higher dimensional pretrained GloVe word embeddings [5], a smarter span selection
mechanism, a policy gradient finetuning scheme (which is applied to FusionNet in our experiments,
as FusionNet is our best performing single model) and a distributional ensemble strategy.

For subsequent discussion, let’s assume we are given a document/context (C) of m words and a
question (Q) of n words. Each word is represented by using pretrained GloVe word embeddings: we
use g¢ to represent the GloVe embedding for the i-th word in the context.

2.1 Deep Residual Coattention (DRCoattn) Encoder

The Deep Residual Coattention (DRCoattn) [3] is a multi-level information fusion module that
builds upon the coattention encoder in [2]. It modifies the coattention encoder in two ways: (1)
the DRCoattn incorporates self-attention by stacking coattention layers, and (2) the outputs from
coattention layers are merged with residual connections. We implemented this DRCoattn encoder with
the provided baseline decoder. In order to keep the main report compact, please refer to Appendix A
in the separate Supplementary Material for additional details for this encoder.

2.2 Dynamic Coattention Network (DCN)

We choose to implement the full model of DCN in [2], which includes a coattention encoder and a
dynamic pointing decoder. For compactness, we refer the reader to the Appendix D in the supplemen-
tary material for all our implementation details of the DCN decoder (some details are not explicitly
included in the original paper).

2.3 FusionNet

The final attention-based architecture we implemented is FusionNet in [4].It achieved the first position
for both single and ensemble model on the official SQuAD leaderboard as of Oct. 4th, 2017, which
motivates us to replicate their attention-based mechanism so we could achieve similar levels of
performance.

2.3.1 Fully-aware attention on history of word

Huang et al.[4] defined the history of the i-th word as the concatenation of all representations
generated for this word. To better exploit the rich information embedded in history-of-word for neural
structure models, they proposed the idea of fully-aware attention, which can be used to fuse various
levels of information from one body (e.g. question) to another (e.g. context). Consider two set of
history-of-words for words in text A and B: {HoW{*,..., HoWA}, {HoWE, ... HoWB} c R,
Fusing text body B to body A via fully-aware attention is conducted by computing the summarized
information vector for every word in body A. For the i-th word in A, the summarized fusion is
computed as,

e Generate an attention score S;; = S(HoW/, HoWP)eRforj=1,...,n.
e Compute the normalized attention weights: a;; = exp(S;;)/ >, exp(Sik).

e The summarized fusion information for the i-th word in A is, ) ; Qi H oWJB , and it is often
concatenated to the current history of the i-th word.

A symmetric nonlinear scoring function is proposed and used in FusionNet, which is of the following
form,

Sij = F(W(HoW"))Df(W (HoW})) M

where W € R**4n_D ¢ RF** are trainable matrices, and D is diagonal, k is the attention hidden
size. f(-) is an element-wise activation function, and f(u) = max(0, u) is used in FusionNet.

2.3.2 Architecture

An illustration of FusionNet figure is included in Appendix B of the supplementary materials. The
end-to-end neural architecture consists of the following components.



Input vectors. For each word in context (C) and question (Q), we use the 300-dim GloVe embed-
dings pretrained on the 840B Common Crawl corpus [5] as input vectors. Note: this is different from
the original FusionNet, which uses significantly higher dimensional input vectors with more features
(e.g., concatenated CoVe embeddings, NER and POS tags).

Fully-aware multi-level fusion: word-level and reading. Now, we will introduce the multi-level
fusion in FusionNet starting with the word-level fusion, which is an attention based fusion on GloVe
embedding g;,

= Z aijg;f’g, Qi o< eo:p(S(giC,gJQ)), S(vg,vy) = ReLU (Wu,)T ReLU (Way).
g
where W € R390%300_ The enhanced input vectors for context is then & = [¢¢; §€]. Next, in the
reading component, a separate BILSTM is used to form low-level and high level concepts for C and

Q7
hSY . RSt = BiLSTM (S, ...,5S), Rh%,...,hQ' = BiLSTM(4%,...,¢9)
hSh, . RS = BiLSTM (RS, ..., hCY, BS" ... h@" = BiLSTM (RS, ... hSY)
The hidden size of BILSTM is set to be 125 (the same as in the original paper).

Question Understanding. we then apply a new BiLSTM to form the final question representation
Ug,
Ug ={u?,...,ud} = BiLSTM([hZ; P, ..., [RF; RI*))

n n

where each u;"? € R?0 is the understanding vector for the j-th word in question (Q).

Fully-aware multi-level fusion: higher-level. For higher level fusion, the information in the
question (Q) is fused to the context (C) via multi-level fully-aware attention on history-of-word.

At the current stage, the history-of-words for C and Q are HoWE = [¢¢; h{L RS, H OWiQ =
[gl : th th] Then three different levels of information from Q are fused to C through fully-aware
attentlon described above,
2 l
Low-level: hS! = Z ol .n? ozl o< exp(S' (HoWE, HoWjQ)).

i7"

High-level: h" = Za B3, ol o eap(S" (HOWS, HoW})).

(YA

Understanding-level: 4 Za” u?, o5 o exp(SU(H oWC H OW]-Q)).

where all the scoring functions S!, S, S* are the fully-aware attention score function defined in
Equation (1), but with different and independent parameters to learn different levels of fusion.
Attention hidden size is set to be k& = 250. Next, a new BiLSTM is used to obtain a context
representation with fused information from the question,

o ;o0 S | = BILEP MRS B A BP0 oo s (B B BGS RERACT)
Fully-Aware Self-Boosted Fusion. Finally, the self attention/fusion is applied on the history-of-
word for the context via fully-aware attention. The authors believe that the self-boosted fusion
can help the model consider distant parts in the context. Now, the history-of-word is updated to

be H OWC = [ O hCL RS hCE R 4L vC], and the fully-aware attention is applied, 9C =

PIFL J ,  af; o< exp(S*(H OWC H OWC)) The final context representation is generated by
(the LSTM h1dden size is still 125),

Uc = {uf,...,un} = BiLSTM ({3 97], ..., [v; 9))

Decoder. The decoder takes the question understanding Ug and context understanding Uc as
inputs and generates predictions for the answer span, more precisely, the start and end probability
distributions PZ-S , PE for each word i in the context. We implement the same decoder as in the
FusionNet paper.



2.3.3 Training

For FusionNet trainin, sg we first conduct a superv1sed learning with cross entropy objective that
maximize ), (log(P:) + log( PE ), where s*, ¥ are the ground truth start and end positions for
the k-th example. Then we deploy a second phrase fine tuning with policy gradients [6] and simple
reinforcement learning (RL) rewards after the supervised training. The procedure is similar to the
one used in the Reinforced Mnemonic Reader [7]. The RL state x can be viewed as the GloVe

embeddings of the question and the context, x = {glc 354 5 5 gg, ng, 153 gg }, and the FusionNet can
be viewed as a policy network 7 (a|z) parameterized by 6 which maps the state z to a probability
distribution over the joint discrete action space A = {1,...,m}?2, where the superscript 2 indicates

we need to select one action position for the start as and one for the end a.. The actions are selected
by sampling from distributions a, ~ P°, a. ~ P, and each RL trajectory only lasts for one-time
step here (one-shot decision-making). We adopt a simple RL reward, for simplicity, as follows,

R(z, [as, ae]) = =(las — s| +[ac —¢]), [as,ac] € A @

Then, the REINFORCE policy gradient can be computed and used to update # by minimizing the
following loss function,

0) = —% Y log(mo(alz))R(z,a) = —% > _(logP;; +logPl)R(; [as,ac])  (3)
k k

where k indicates the k-th instance in a mini-batch. Since each trajectory only has one example, we
currently have not applied any variance reduction technique.

2.4 Smarter Span

For all our models (except the RL finetuning model), we predict the answer span 3, € that has the
maximum P PE subject to the constraint 0 < é — § < 15.

2.5 Ensemble Strategy

We deploy a distributional ensemble strategy when combining different models. First, we average the
start P° and end PP distributions generated from different models. Then, we use the smarter span
extension discussed above to select answer spans from the averaged distribution.

3 Experiments
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Figure 1: Histogram of training data. Dashed vertical orange line represents mean value.

3.1 Experimental details

Figure 1 shows the histogram of the training dataset. It clearly shows that the upper bound of question
length is about 30, most of the context paragraphs are below 400 words, and most of the correct
answers are less than 15 words. Therefore, we pick our question length n = 30, context length
m = 400, and smarter span limit of 15 for all models. The first two choices help reduce training time,
whereas the last choice helps with prediction performance. Also, we use 300d GloVe word vectors



Table 1: Evaluation results of various models on Dev set (including ablation study)

Our Dev Original Score
Model F1 EM F1 EM
Coattn (only)! 75.01 63.72 - 5
DCN 75.15 64.06 756 654
DRCoattn (only)! 73.13  62.81 - -
FusionNet 7526 65.08 83.6 753
FusionNet (w/ RL) 75.02 64.58 - -
Ensemble? 7834 6841 - -
EnsembleX(w/o smart span) 76.92 67.09 - -
Baseline’(100d) 4359 34.63 - -
Baseline3(300d) 4725 37.80 - -

!'indicate using encoder only (with baseline decoder).

2 ensemble model includes Coattn, DCN, DRCoattn, and Fusion-
Net. 3 ablation study on GloVe embeddings, either 100d or 300d
vectors.

pretrained on the 840B Common Crawl corpus [5] for all model inputs (no more extra features), and
use Adam [8] optimizer with a learning rate of 1le — 3 (and fine tuning with le — 4).

For DCN and coattention layers, we use a hidden size of 200 for all neural units. Sentinel vectors
are randomly initialized and optimized during training. For the decoder, we set the number of fixed
iterations to 4 and use a mazout pool size of 16, dropout rate of 0.2, and batch size of 32.

For FusionNet, we use a dropout rate of 0.3 (fine tuning with 0.4), and for LSTMs we use the
variational dropout scheme in [9]. The model is trained with batch size of 128. We also use a different
hidden size of 125 as specified by the paper.

3.2 Main results

Table 1 summarizes our main results (F1/EM scores) on the official dev set. The test set scores are
included in the additional materials PDF that will accompany this report. Our best single model
is FusionNet which achieved F'1 = 75.3, EM = 65.1, followed by full DCN (encoder + decoder)
with F'1 = 75.2, EM = 64.1,. Our ensemble model combines the outputs from the following 4
models: the coattention (only) model, the DCN, the DRCoattn (only) model and the FusionNet, and
it achieved our best scores of F1 = 78.3 and EM = 68.4 on the Dev set. Since here we are combining
4 different neural architecture outputs and these outputs may reflect different internal distributional
representations, we argue that the distributional ensemble strategy would outperform the majority
vote and it indeed improves our Dev performance by more than 3%. As we will see later in error
analysis (Section 3.3), however, the averaged distribution can lose certain long range dependency
and information already learned in the single FusionNet. Additional reasons for why ensembling
boosted performance significantly in our case include the fact that our ensemble consists of rather
different architectures: alternative ways of using ensembling to achieve similar performance gains
(e.g., original FusionNet ensemble) involve training a significantly larger number of models with the
same architecture but changing up their initialization.

Unfortunately, our proposed policy gradient fine tuning for FusionNet ends up overfitting too much
to the training set (our best observed training score: F'1 = 92%, EM = 80%, and the FusionNet
with RL tuning does not outperform the model using cross-entropy (CE) loss. We believe that the
simple reward function in Equation (2) make not be sufficient to help the model generalize well, and
we will leave the various ways of designing a better reward function (such as using F'1 score as in
[3, 7]) as a direction for future work. We can also see that smarter span and higher dimensional word
embeddinsg do help improve the performance.

Compared with the original model performance of DCN and FusionNet in the reference paper, our
implementation of DCN achieved similar scores on Dev set, but there is still a gap in performance for
our FusionNet. We extrapolate that the additional (621-dimensional) features besides GloVe play an



important role in FusionNet. i.e., since our embeddings were low-dimensional in relation to theirs,
we were not able to get as much out of the FusionNet architecture as we would have liked; we feel
as though this makes sense since the FusionNet architecture relies on having good history-of-word
representations for words, which require the input word vectors to have lots of features to begin with.
We will consider adding those extra features in our future work.

Dev performance of top 10 question types (type = prefix)
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Figure 2: (a) Dev answer length comparison between our best ensemble model and the ground
truth For dev, we sampled one of the valid answers for ea. question to ensure that the counts are
comparable. (b) Dev F1/EM scores of the ensemble for the top 10 question types.

Figure 2 shows the performance analysis of our ensemble model. By utilizing the smarter span
mechanism, the answer length histogram closely matches that of the ground truth on the Dev set
except that our ensemble model tends to predict shorter answers. Figure 2 (b) summarizes the
performance F1/EM for the top 10 question types. The model performs the best for the "When" type
question, which mostly requires only a short answer, while it performs the worst for "Why" questions.
Typically, "Why" type questions require longer answers and broader range of dependencies needs to
be captured by the model; these are potential reasons for why this type of question is hard for our
model to answer.

3.3 Dev Set Examples and Error Analysis (DCN, FusionNet and Ensemble)
3.3.1 Long range dependency

Context: kenya * s armed forces , like many government institutions in the country , have been
tainted by corruption allegations . because the operations of the armed forces have been traditionally
cloaked by the ubiquitous blanket of “ state security ” , the corruption has been less in public view
, and thus less subject to public scrutiny and notoriety . this has changed recently . in what are by
kenyan standards unprecedented revelations , in 2010 , credible claims of corruption were made with
regard to recruitment and procurement of armoured personnel carriers . further , the wisdom and
prudence of certain decisions of procurement have been publicly questioned .

Question: why has the corruption not be in the public view?

Answers: DCN: because the operations of the armed forces; FusionNet: because the operations of
the armed forces have been traditionally cloaked; Ensemble: because the operations of the armed
forces; Ground Truth: [’Because the operations of the armed forces have been traditionally cloaked

999

by the ubiquitous blanket of “state security’”’, ’state security’, ’state security’]

Analysis: This "Why" type question requires a fairly long answer and a long range dependency.
As pointed out by the authors in [4], the self-boosted attention mechanism indeed helps here for
capturing long range information, and FusionNet generates a better answer (higher F1 score) than
the DCN model. Interestingly, after combining the distributions, the ensemble model loses some of
the long range information and tends to predict a shorter answer. Although this may be an issue for
answering "Why" type questions, the distributional averaged ensemble can help reduce variance and
in general improve the overall performance.
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(b) High-level attention: S’ & scoring matrix
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(d) Start and End distributions from decoder

Figure 3: FusionNet multilevel attention visualization. (a)-(c): multilevel summarization/similarity
matrices from encoder (Section 2.3.2). (d) Final output start and end position distributions from
decoder. Note that even though the pmf is displayed as continuous for nice visualization, even though
the distribution is actually discrete.

3.3.2 Inaccurate attention position

Context: the broncos ’ defense ranked first in the nfl yards allowed ( 4,530 ) for the first time in
franchise history , and fourth in points allowed ( 296 ) . defensive ends derek wolfe and malik jackson
each had 5.5 sacks . pro bowl linebacker von miller led the team with 11 sacks , forced four fumbles ,
and recovered three . linebacker demarcus ware was selected to play in the pro bowl for the ninth
time in his career , ranking second on the team with 7.5 sacks . linebacker brandon marshall led the
team in total tackles with 109 , while danny trevathan ranked second with 102 . cornerbacks aqib
talib ( three interceptions ) and chris harris , jr. ( two interceptions ) were the other two pro bowl
selections from the defense .



Questions: how many yards did the broncos * defense give up ?
Answers: DCN: nfl yards; FusionNet: 4,530; Ensemble: 4,530; Ground Truth: *4,530’.

Analysis: For this question, the DCN model attends to a wrong position (shifted) in the context, while
FusionNet is able to pinpoint the correct answer possibly owning to its consideration of multi-level
information. When averaging as part of our ensemble strategy, the FusionNet contributes more
than DCN here (FusionNet is fairly confident in its answer) and the ensemble model can still find
the correct answer. (Note:A couple of more Dev set examples are included in Appendix C in the
supplementary material.)

3.4 FusionNet: Multilevel Attention Visualization

We now analyze the predictive ability of the best-performing model in our ensemble, the FusionNet,
by examining an example in significant detail and reporting what we observe with respect to the
various levels of attention employed in the FusionNet model. Consider the following example in our
Dev set: Context: another important library — the university library , founded in 1816, is home to
over two million items . the building was designed by architects marek budzynski and zbigniew
badowski and opened on 15 december 1999 . it is surrounded by green . the university library garden
, designed by irena bajerska , was opened on 12 june 2002 . (rest of tokens omitted for brevity)
Question: who designed the garden for the university library ?

The correct answer is the single answer span "irena bajerska" (all crowdworkers picked this span),
which appears in positions 51, 52 of the context (0-indexed). Our FusionNet is able to correctly
predict this answer span (and, as an aside, the ensemble is as well).

The steps it takes in order to come up with this prediction is quite impressive: recall from the
discussion in Section 2.3.2 that the prediction of FusionNet architecture depends on the output of
multiple attention layers that focus on different levels of understanding: from low-level to high-level
understanding. Each layer has a corresponding affinity/similarity matrix (S!, S”, S*) that is indicative
of the relationship between context word representations and query word representations.

In Figure 3(a), we can see that the low-level attention layer places high attention scores on the tokens
"marek budzynski", "zbigniew badowski", and "irena bajerska". This is interesting because all of
these tokens correspond to names, and these tokens together cover all of the names within the context.
Furthermore, all of these names correspond to architect designers, and we can see that we are not
able to use the information from the associated S scoring matrix alone to decide among which of
the three names to pick to answer the question. Very frequently questions that start with *who’ are
answered with the name of a person, and this low-level layer is able to pick up on that relationship.

In Figure 3(b), the high-level attention gives a really high score for garden’ in the context with
’garden’ in the question. Because we know that this model is able to output the correct name out
of the three names, we can see that the nearby position of *garden’ to the correct name is a factor
that could help the network make the correct prediction. We also observe that this layer in general
reserves giving very high scores (indicated by a ’yellow’ cell) to words in the context that also appear
in the question.

Lastly, Figure 3(d) shows that how the attention output from the encoder is used to construct the
probability distribution for the predicted start and end indices. It clearly shows that there is a lot
of probability mass for start and end indices 51 and 52, and it also means that the model is very
confident in predicting the correct answer "irena bajerska". We can also observe some non-zero
probability mass assigned to context indices corresponding to the alternative names, likely as a result
of the high attention scores from the low-level attention. Combining with higher level fusion, the
model is able to assign probability masses correctly. This is consistent with the results-supported
claim (that the FusionNet authors made) about the necessity to capture full information in the context
or the question in order to have a complete information comprehension when answering a question.

4 Conclusion

In this paper, we re-implement several recent attention-based architectures for machine reading com-
prehension on SQuAD. We are able to match the original reference Dev score for our implementation



of DCN, but with less features, our version of FusionNet does not perform as well as the reference
model. Thus, adding more features, e.g. CoVe embedding and POS, NER tags, will be our next step
to improving our model. Our distributional ensemble strategy boosts the Dev performance by more
than 3% and our best ensemble model achieved a score of F'1 = 78.3, EM = 68.4. Another future
direction would be extending our model that incorporates RL, by designing better reward functions
for policy-gradient fine tuning and experimenting with more advanced policy gradient methods.
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