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Abstract

Visual Question Answering (VQA) is a field of research of immense significance
that combines natural language processing with computer vision. The task is to
develop Al systems that can understand and reply to questions based on a visual
input. In this project, we model answering several open ended questions from
images given the input text. As our baseline, we measured the performance of
combining text and image using an LSTM module with CNN on the Visual Ques-
tion Answering Dataset (VQA V2). This model by itself gave an accuracy of
40.06% which is solid, given the free-form nature of questions and diverse cov-
erage of the data that was also specifically cleaned to remove language bias. We
then implemented Stacked Attention Networks and Dynamic Memory Networks,
both of which are stronger models in capturing the semantic representations.

1 Introduction

Answering Visual Questions is a longstanding area of study that has gained huge interest commen-
surate with the rich set of applications they enable. Notable among its applications is its use in
assisting visually impaired individuals to understand contents of images. However, making a ma-
chine understand an image is as challenging as it is intriguing. It involves multimodal learning that
combines effectively representation of text with that of image. In this project, we look at the results
of training a popular but strong baseline for VQA along with improvement that additional model
complexities like attention bring in.

2 Background

VQA is one of those tasks that gained popularity after deep learning approaches began improving
state-of-the-art performance on vari- ous vision and NLP challenges. Recent years saw the devel-
opment of several approaches as well as more rigorous evaluation protocols to tackle this appealing
intersection. There have also been much effort to develop datasets that remove the strong prior and
bias seen in natural language which otherwise allow models to gain good superficial performance
without any underlying understanding of the visual content. Visual Question Answering Dataset
and Challenge (VQA v2.0) [5] is a relatively new and balanced dataset that has carefully removed
several such priors. We have used the same for all our experiments and baseline in this project.

3 Related Work

3.1 Hierarchical Co-Attention

Hierarchical Question-Image Co-Attention is a method that symmetrically attends to the question
and image representation where one is used to guide attention in the other [8]. First the question is
represented hierarchically at 3 different levels: word, phrase and the level of question itself. These



in turn are used to construct image-question co-attention maps in parallel or alternating fashion. The
co-attended features are then recursively combined from word level to question level for the final
answer prediction.

From the input question @) word level embedding Q¥ = {q}’,..., ¢} } are first created. For the
phrase features, 1-D convolution of the word embedding vectors is computed using filters of window
size unigram, bigram and trigram. Max-pooling across different n-grams at each word location gives
the phrase-level features q;,. The sequence q; is then encoded using LSTM whose hidden vector at

time t gives the question-level feature ¢°.

Parallel Co-Attention In this scheme, image and question attention are generated simultaneously in
each level of the question hierarchy. For this, an affinity matrix C' is computed from image and
question feature maps V and Q as C' = tanh(QT W} V). Then the image (or question) attention is
computed by maximizing the affinity over the locations of other modality; i.e, the attention weights
are given by a[n] = maz;(C; ) and a?[t] = maxz;(C} ;). These are used to calculate the image
and question attention vectors ¢ and ¢ as the weighted sum of the image features and question
features.

Alternating Co-Attention In the alternating co-attention scheme, at each level of the hierarchy an
attention operation takes as input the image (or question) features and the attention guidance derived
from question (or image) as inputs, and outputs the attended image (or question) vector.

For predicting the final answer of VQA, the co-attended image and question features from
all three levels are passed through separate multi-layer perceptrons to recursively encode
the attention features. A softmax of at the final level gives the probability of answers:
RY = tanh(W,,(v* + q*)), h? = tanh(W,[(vP + gP), h*]), h* = tanh(W[(v® + ¢%), hP]),

p = softmax(Wph?)

3.2 Multimodal Compact Bilinear pooling

Multimodal Compact Bilinear pooling (MCB) is a method of pooling the visual and textual represen-
tations that is more effective and expressive than simple approaches such as element-wise product
or sum [4]. Due to their high dimensionality, the outer product of image and question vectors is typ-
ically infeasible. MCB approximates this by randomly projecting the image and text representations
to a higher dimensional space using Count Sketch [3] and then convolving both vectors efficiently
by element-wise product in Fast Fourier Transform (FFT) space. MCB is used to predict answers
for the VQA task as well as fine grained locations for visual grounding. Both these problems require
finding the most likely answer or location a from the network parameters and is obtained by taking
argmax over its set of solutions.

Given two vectors z1 € R™ and x5 € R™?, MCB learns a linear model of their outer product given
by: z = W[z, ® x5) Here z; ® x5 denotes the outer product z;x7 .

For the task of VQA, the query and context image is processed into vectors 1 and 2 and passed
through MCB. This is followed by an element-wise signed square-root and Ly normalization which
is used for the final prediction using a fully connected layer.

3.3 Multimodal Low-rank Bilinear pooling

Given two input vectors, bilinear pooling provides richer representations than linear models by tak-
ing their outer product (or Kroneker product in case of matrices). Since outer product considers all
pairwise interactions among given features, such a layer of bilinear pooling can effectively replace
the fully-connected layers in neural networks for combining image and text vectors.

Multimodal Low-rank Bilinear (MLB) pooling is a work that parametrizes full bilinear interactions
between image and question spaces using Hadamard product to learn their joint representation [6].
To limit the number of free parameters, the output tensor is constrained to be of low rank r. This
method outperformed compact bilinear pooling in visual question-answering tasks and gave state-of-
the-art results on the VQA dataset (v1). It also has better parsimonious property because calculating
the exact expectation over the projected dimensions in compact bilinear pooling is computationally
intractable and hence keeps the random parameters in the projections fixed during training and eval-



uation demanding the projected dimensions to be large enough to minimize the bias from using fixed
parameters.

3.4 Multimodal Tucker Fusion

Multimodal Tucker Fusion (MUTAN) is another method to efficiently parametrize bilinear interac-
tions between visual and textual representations using multimodal tensor-based Tucker decomposi-
tion [2].

While MLB has been very successful in its performance on VQA database, its low rank tensor
structure is equivalent to a projection of both visual and question representations into a common
space, where simple element-wise product computes the interactions. Thus MLB relies on a simple
fusion scheme and learns a mono-modal embedding for text and image. For the VQA task, it is
important to merge both modalities by learning very precise correlations in order to decide which
answer is correct.

MUTAN does this by multimodal fusion based on bilinear interactions between modalities. Since
fully- parametrized bilinear interactions are intractable in VQA due to the prohibitive size of the
full tensor, MUTAN controls the number of parameters by reducing the size of the monomodal
embeddings, while modelling interaction as accurately as possible. It also does further structuring
on the Tucker decomposition of input tensor to improve flexibility over the input/output dimensions
and decreasing parameter size.

4 Approach

4.1 Baseline

A simple yet effective baseline for VQA is decoupling learning from the image and text and then
producing a joint representation using deep neural networks. We used gated recurrent unit (GRU)
model for text processing and combined its features with the processed image features of the same
size by element wise multiplication. This combined feature vector was passed through two dense
layers and a softmax to get the final probability distribution of the answers. The image feature
vectors were themselves prepared by preprocessing the image using VGGNet 19 [9], extracting its
14 x 14 x 512 sized 3D feature maps from the final pooling layer and flattening to a 2d vector using
a dense layer.
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Figure 1: Baseline Architecture

4.2 Stacked Attention Networks

Stacked Attention Networks (SANs) help in answering natural language questions from images
using multiple steps of reasoning. SANs extend attention mechanism and uses the semantic repre-
sentation of a question as query to search for the regions in an image that are related to the answer



[11]. In this method, the image model obtained from a CNN and the question model obtained from
a CNN or a LSTM is passed over the stacked attention model that locates via a multi-step reasoning,
the image regions that are relevant to the question.
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Figure 2: Architecture of Stacked Attention Network

For the image model, we used features from the last pooling layer of VGGNet 19 to extract the image
feature map f; from a raw image I. Hence the image features have a dimension of 512 x 14 x 14,
which are then passed through a single layer perceptron to transform each feature vector to a new
vector vr having the same dimension as the question vector v.

Similarly for the question model, we first embed its words to a vector space through using Glove
and feed this to an LSTM. Its final hidden layer is taken as question vector vg.

Next, the stacked attention module takes in v and v; and feeds them through through a single layer
neural network and a softmax function to generate the attention distribution over the image regions:

ha = tanh(W[,Avl- ® (WQ7A’UQ + bA)
pr = softmax(Wphy + bp)

Using this attention distribution, we calculate the weighted sum of the image vectors each from a
region to get the new image vector ¥. Similarly, the sum of ¥ with the old question vector gives us
a refined question vector. In principle, we can repeat this process of fine tuning our vectors using
attention over as many steps as we like. The assumption here is that each time our iteration extracts
more fine-grained visual attention information from the vectors for answer prediction. But we only
used attention for 1 and 2 steps as suggested in the original paper [11]. The final prediction is done
via a softmax over the final refined question vector.

4.3 Dynamic Memory Networks +

Dynamic Memory Network (DMN) [7] and its improvement DMN+ [10] is a neural network-based
framework trained using triplets of (input text/image, question, answer) to solve textual and visual
question answering tasks. The DMN computes a representation for all of the inputs and the question
asked, then iterates with attention through the inputs to retrieve relevant facts. The memory module
reasons over these facts and generates a vector representation of all relevant information to the
question. This representation is then passed to the answer module, which generates the answer.

Visual Input Module : This module encodes input images to extract 14 x 114 x 512 3D feature maps
of the images. These feature maps are projected into linear space and passed through a bidirectional
GRU to obtain facts about images which are passed onto the episodic memory module.

¥, = GRUwa(fio 1, £2) + CRUpwa(fisn, £2)

Question Module : This module encodes questions by passing individual words through a GRU.
Only the last hidden state of the GRU is passed to the episodic memory module for further compu-
tation.

qt = GRU(Qh Qt—l)



Episodic Memory Module : This module computes interaction between questions and facts and
uses attention GRU to focus on relevant interactions. These interactions are then used to update the
internal memory state. Multiple memory passes are performed over the facts and the questions. The
final memory state is passed to the answer module for further processing to predict answers.

i 7 i t—1.% e t—1
zp=[fioq fiom ™| fi—al;|fi —m' ]
m! = GRU(c!,m*™Y), gt = softmaz(WPtanh(WOV 2z 4+ bM)) 4 b3
Answer Module : This module consists of a fully connected layer that takes in question feature

and last memory state as input, concatenates them and then predicts answer after a softmax over all
possible answer words.

y= softmax(W(a)a), a = [g;mr]
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Figure 3: Architecture of Dynamic Memory Networks+

Question module

S Experiments

5.1 Dataset

We used VQA v2 dataset [5] for training models for visual question answering task. The com-
plete VQA v2 dataset contains 443,757 training questions and 82,783 training images source from
MSCOCO Image Dataset. The validation dataset contains 214,354 questions and 40,504 images.
There are 10 possible answers per question. All the questions are free text and are open-ended; there
are not multiple choice type questions. The evaluation metric uses 10 groundtruth answers for each
question to compute VQA accuracies. The predicted answer for each question should match with
atleast 3 answers to receive full credit. We used the evaluation script provided by VQA to evaluate
our models. For all our experiments, we trained on training set and tested on validation set, as VQA
does not provide a test set.

In order to reduced language bias, VQA v2 was formed by collecting complementary images such
that every question is associated with a pair of similar images in the dataset but results in two
different answers. This balanced dataset forces VQA models to focus on visual information and not
simply rely on language priors. For instance, in the original VQA data (version 1), the most common
answer “’tennis” to the question "What sport is” is the correct answer for 41% of the cases, and 2" is
the correct answer for 39% of the questions starting with "How many” [1] . Their benchmark results
on state-of-art VQA models showed a significant drop in performance, confirming the hypothesis
that these models indeed had exploited language biases.

5.2 Input Preprocessing

The images were rescaled to 448 x 448 and features of the last max-pooling layer of VGG-19 were
extracted. Each 3-dimensional volume is a spatial-region map of size 14 x 14 x 512 and there are
196 total maps.



The questions were tokenized with nltk parser. A vocabulary was created from these token. All
tokens in the questions were indexed according to this vocabulary. Once indexed, the questions
were right aligned and made of same length by prepending zeros.

The answers were also tokenized with nltk-parser. Frequencies of all the answers were counted and
only top 1000 answers were considered. A vocabulary was created classes from these answers and
the answers were indexed accordingly. Answers that are below this threshold were mapped to none.
We framed the visual question answering task as a classification task over these 1000 answers.

5.3 Baseline

We trained and evaluated our baseline on both VQA v1 and VQA v2 to check if there was a signifi-
cant language prior in given data that our baseline model was exploiting.

5.3.1 Experiments on VQA v1.0

We trained our baseline model with Adam optimizer for 15 epochs. The model started overfitting
after 9-10 epochs. We used a batch size of 100 and input embeddings of size 512. We used learning
rate of le-4. The weights of input embeddings were uniformly initialized between -0.08 and 0.08.
We achieved validation/test accuracy of 50.21% on this dataset.

5.3.2 Experiments on VQA v2.0

We used similar experimental configuration and hyperparameters as in the previous experiment. We
noted a drop in test accuracy after switching to VQA v2 dataset from 50.21% to 40.06%. This
proved that our baseline did not use visual input efficiently and relied mostly on the language to
predict answers. We decided to experiment with models that made more effective use of the image
features and paid attention to both image and question.

5.4 Stacked Attention Network

Input image features were 196 3D feature maps of size 14 x 14 x 512 which were projected by
passing through a fully connected layer to obtain feature matrices. Word features were extracted by
passing embedded word vectors through a GRU. The dimension of projected feature space was 512.
We experimented with variations of SAN with a single attention layer and two attention layers. We
achieved higher accuracy of 47.11% with two attention layers as expected against 44.38% in case of
single attention layer. We did not experiment with larger number of attention layers as Yang et. al.
[11] report that it degrades performance.

5.5 Dynamic Memory Network (DMN+)

We trained DMN+ on a subset of VQA v2 data of size 100K (roughly 30% of training data) as we
were running into out of memory issues while trying to train on the entire VQA v2 dataset. We wrote
a disk-based data loader to read a batch of data directly from disk. However, this made the overall
algorithm extremely slow and one epoch took around 2.5 hours. Due to computational constraints
we trained on a subset of data. We used Adam optimizer with learning rate of le-4 and batch size
of 100.Size of embedding and the hidden layer was 512. We used three episodic memory passes
before predicting the final output. After training on this subset, we achieved accuracy of 21.65% on
validation split of the VQA v2.0 dataset. This is lower than its reported state-of-the-art performance,
but since the training was only done one-third of actual train data, we couldn’t improve any further.

6 Ablative Analysis

We first trained a simple GRU, without any visual input, to predict answers on VQA v2 dataset. This
model gave test accuracy of 38.43%. We next introduced a CNN with features extracted from max
pooling layer of VGGNet. These extracted features were multiplied with word features extracted
from GRU. This model achieved accuracy of 40.06%. We next added attention to our model through
Stacked Attention Network which increased our accuracy to 47.11%.



Architecture | Test Accuracy |

Baseline-CNN-GRU (VQA v1) 50.21%
Baseline-CNN-GRU (VQA v2) 40.06%

Stacked Attention Network (VQA v2) 47.11%
Dynamic Memory Network *(trained on 100K VQA v2)) 21.65%
Hierarchical Co-Attention Network **(reported in [5]) 51.88%
Multimodel Compact Bilinear Pooling **(reported in [5]) 56.08%

Table 1: Results: Since VQA does not have test split, all reports are on validation split

| Answer type | GRU | CNN-GRU | SAN-1 [ SAN-2 |
Yes/No 63.69 63.70 63.65 63.52

Number 28.20 30.00 30.33 30.84
Others 23.93 27.90 33.44 36.79

Table 2: Per Answer-Type Performance across models

| Architecture | Test Accuracy |
Language-based model (GRU without CNN and image input) 38.43%
Baseline-CNN-GRU (VQA v1) 50.21%
Baseline-CNN-GRU (VQA v2) 40.06%
Stacked Attention 1 layer (VQA v2) 44.38%
Stacked Attention Network 2 layers (VQA v2) 47.11%
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Figure 4: Loss Plots for VQA V2

7 Inference and Conclusion

A simple check of performance on VQA v1 and v2 using our baseline architecture showed a drop
of 10% on using v2. The drop is indeed very drastic and demonstrates that the balanced VQA v2
dataset is particularly difficult, requiring VQA models to understand and distinguish between the
most subtle differences among the complimentary images in order to predict the answers to both the
images correctly. As mentioned by the creators of VQA v2, the complementary images in VQA v2
are close to one another in the semantic (fc7) [5] space of VGGNet features and forces VQA models

to learn very careful and differentiating image features to perform well.
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