Building a Question Answering System with a
Character Level Convolutional Neural Network
and Attention Layers — Is it a good idea?

Praveen Govindraj
SCPD
Houston, Texas
pbabu@stanford.edu

Abstract

Question answering forms the basis of interacting with modern computers.
With the development of advanced computer hardware and software, it
becomes imperative that we develop systems that can directly understand
human communication without the need for machine level code to translate
it. In this paper we introduce one such methodology applied to the problem
of communicating with a computer via questions and answers.

1 Introduction

Natural Language Processing focuses on the interactions between human language and
computers. It sits at the intersection of computer science, artificial intelligence, and
computational linguistics. NLP is a way for computers to analyze, understand, and derive
meaning from human language in a smart and useful way. By utilizing NLP, developers can
organize and structure knowledge to perform tasks such as automatic summarization,
translation, named entity recognition, relationship extraction, sentiment analysis, speech
recognition, and topic segmentation.

Artificial intelligence and deep learning evolved from the research on human brain
modeling. The initial development of neural networks evolved from the ambition to
understand and mimic the human brain. The need for computer automation for complex tasks
pushed the boundaries significantly in the last decade leading researchers to come up with
very sophisticated algorithms.

Deep learning methods play an important role in NLP tasks such as image recognition,
sentiment analysis, text classification and so on. One among the many methods, the
Convolutional Neural Network (CNN) has recently achieved remarkable performance on the
task of sentence classification. [1]

Convolutional Neural Networks are very similar to ordinary Neural Networks. They are also
made up of neurons that have weights and biases that can be learnt through many iterations.
CNN are just several layers of convolutions with nonlinear activation functions applied to
the results. They utilize layers with convolving filters that are applied to local features. The
architecture usually consists of an input layer that contains sentences which are made up of
word2vec word embeddings. This is followed by a convolutional layer, a max-pooling layer
and a softmax classifier. The softmax layer gives the output as the probability distribution
over different labels.

CNN have been traditionally applied to image processing (Figl). Each region of the input is
a neuron. Information from a large number of regions is processed via filters and weights to
give a better understanding of the features that form the original input. In the field of NLP,
the input is a series of characters, words and sentences.

Fully Fully

Output

Convolution Pooling Convolution Pooling Connected Connected predictions

sy -

4+

Fig 1: CNN applied to Image Processing[2]
1.1 Project Scope

The goal of the exercise was to produce a reading comprehension system that works on
SQuAD (Stanford Question Answering Dataset)[5]. The SQuAD dataset consists of 100K
questions, answers and contexts based on information collected from Wikipedia. The
answers were crowdsourced. The QA system has to come up with a correct answer for a
question based on a context provided for the question. Contexts, question and answers were
divided into three phases- Train, Dev and Test. Performance of the model was then measured
via two metrics — F1 and Exact match (EM) score.

From, the get go, the project was undertaken with the explicit goal of not to to beat a certain
score or top the leader-boards but was approached with an exploratory view to understand
the application of CNN to NLP and see the outcomes of a particular design. NLP
Researchers face many design decisions before building a certain model. The outcomes of
each of those decisions are not known in advance and cannot be judged to yield a particular
outcome due to the presence of a large number of hyper parameters. The following pages
will report on the model and approach that was undertaken for the project and the results of
that approach.

2 Model

The model consists of four components - Character embedding layer, RNN encoder layer,
Attention layer and an Output layer. Character embedding layer maps each word to a vector
space using character level CNNs. RNN encoder layer encodes both the context and the
question into hidden states. Attention layer combines the context and question
representations. Output layer applies a fully connected layer and one softmax layer to get the
start location and another softmax layer to get the end location of the answer span. The
model was coded in python and mostly uses Tensorflow and other relevant python modules.

road (0.85)

- = e, g, S
1 |:E - L —" ‘_ 'f_'-. 'f"-. car (0.07)

P i
wait i
for ‘ -
the | I
video 1 = \ﬁ\ .. .
and | — —\ \
do SN . "\—\, __________________) W
' \), T i
nt —_— e
rent | |
it
L J L | L L |
n x k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple filter widths and pooling with dropout and
non-static channels feature maps softmax output

Fig 2: Model architecture with two channels for an example sentence[1]

Character Embedding Layer: The following description of the model has been reproduced
from [3]. Character embedding layer is responsible for mapping each word to a high-
dimensional vector space. Let {x1,...x~ } and {q1, . .. qm} represent the words in the input
context paragraph and query, respectively. Following [1], we obtain the character level
embedding of each word using Convolutional Neural Networks (CNN). Characters are
embedded into vectors, which can be considered as 1D inputs to the CNN, and whose size is
the input channel size of the CNN.

The following description has been reproduced from the project description page.

RNN Encoder Layer: For each SQuAD example (context,question, answer), the context is
represented by a sequence of d-dimensional word embeddings xi, ..., zy € R?, and the question
by a sequence of d-dimensional word embeddings ¥y, ...,yy € RY. These are fixed, pre-trained

GloVe embeddings. The embeddings are fed into a 1-layer bidirectional GRU (which is shared
between the context and the question):

{ci.&,...,eN, &8} = biGRU({z1, . .., xN})

— —3 .

{@,d1, . @1, g} = iIGRU({y1,.. ., yn})
The bidirectional GRU produces a sequence of forward hidden states (¢ € R" for the context and
q_; € R" for the question) and a sequence of backward hidden states ((c_, and YJ). We concatenate
the forward and backward hidden states to obtain the context hidden states ¢; and the question
hidden states q; respectively:

ci=[c; &) eR™ Vie{1,...,N}
—. 2h ;
;= [@;q;] R Vje{l,...,M}
Attention Layer: Next, we apply basic dot-product attention, with the context hidden states
¢; attending to the question hidden states g;. For each context hidden state ¢;, the attention
distribution o' € RM is computed as follows:
e =[cq,....clqu] €RY
a' = softmax(e’) € RM
The attention distribution is then used to take a weighted sum of the question hidden states q;,
producing the attention output a;:
M
a; = Za;qj € R
Jj=1

The attention outputs are then concatenated to the context hidden states to obtain the blended
representations b;:

b; = [ci;a;) eR*™ Vie {1,...,N}

Output Layer: Next, each of the blended representations b; are fed through a fully connected
layer followed by a ReLU non-linearity:

i = ReLU(Wgceb; + vrc) €R" Vie {1,...,N}

where Wpe € R and vpe € R" are a weight matrix and bias vector. Next, we assign a score
(or logit) to each context location i by passing b! through a downprojecting linear layer:

logits$™" = wX_ bl + ugare ER Vi €{1,...,N}

i start

where wy,,e € R" is a weight vector and ug.¢ € R a bias term. Finally, we apply the softmax
function to logits,,,, € RV to obtain a probability distribution p*** € RV over the context

locations {1,...,N}:
Pt = softmax(logits®*™'t) € RV

end

We compute a probability distribution p®™ in the same way (though with separate weights wepnq

and Uepg)-

Loss: Our loss function is the sum of the cross-entropy loss for the start and end locations. That
is, if the gold start and end locations are ig..¢ € {1,..., N} and ienq € {1,..., N} respectively,
then the loss for a single example is:

loss = —log p***"* (istart) — log 1)"“‘](1'(»,"1)
During training, this loss is averaged across the batch and minimized with the Adam optimizer.
(=] (=] (=]

Prediction: At test time, given a context and a question, we simply take the argmax over p*ta"
and p to obtain the predicted span (£5tart, gend).8

start

start §
t i

N
= argmax;_,p

end
i

nd N
("% = argmax;_ ,p

If ¢start > gend then the predicted answer text is just an empty string.

3 Approach

CNNs require character embeddings similar to word embeddings. There were two options
available to come up with the character embeddings. The first option was to initialize the
character embeddings with random numbers and the second option was to use pre-trained
character embeddings similar to the Glove word embeddings. The second option was decided
as the best approach to take since it was easily available[4]. The character embeddings were
trained over 840B words but had 300 dimensions. The 300 dimensions seemed big but had
not been tested and so it was decided to give it a try. Character encodings were created from
the masked characters and passed to the CNN.

Character encodings obtained from the CNN are concatenated with GloVe word embeddings
and fed to the RNN encoder layer.

4 Experiments

The required parts of the model shown in the previous page was coded up and ran with
different combinations of the hyper parameters. Among the many hyper parameters, the most
important hyper parameters that determined the accuracy of the results of the model were the
character embedding size, context length, the maximum word length, the maximum character
length and the batch size.

The model was run several times to tune the hyper parameters. Some of the changes that
were tried in the model involved changing the bidirectional GRU layers with bidirectional
LSTM layers in the RNN Encoder Layer. Relu was used for the non-linearity in the CNN and
then changed to tanh to see if improvements in the results could be observed. For
regularization, dropout was used on the final layer of the CNN. Several different dropout
values were experimented with.

5 Results and Findings

The dev leader-board score is - {"fl1": 40.15, "exact match": 34.32}. The CNN model gives
similar or subpar results compared to the baseline results (without CNN) if used alone in a QA
system. CNNs are heavily influenced by hyper parameter selection. Since a 300 dimension
character embedding was used, 300 dimension word embedding also had to be used. This caused
memory issues on the GPU and so had to limit to low input parameter size for the context length,
character length and maximum word length. This limited the ability of the model to learn over
larger number of words and learn better weights.

Using a large dimensional pre-trained character embeddings does not help in CNN. In fact it is a
limiting factor as it causes a lot of memory issues which in turn leads to limiting the size of the
other important hyper parameters. The character embedding size should be small and can be
initialized with random vectors which can be trained later. Max overtime pooling could also be
employed to improve results.

Location invariance and local compositionality which are the main ideas behind CNNs make sense
in case of computer vision applications but they do not make much sense in the case of NLP. The
location where a word lies in the whole sentence is of utmost importance. Words which are close
to one another in a sentence may not be connected in terms of meaning which is quite contrary to
pixels in a specific region of an image that may be a part of a certain object. Thus, CNNs are
generally applied only to classification tasks such as topic categorization or sentiment analysis and
so other authors have found better results with CNN applied to those topics.

Convolution and pooling operations lose information about the order of words. So applications
like PoS tagging or entity extraction where sequence is important are harder to fit into the
traditional CNN architecture. These shortcomings lead to the conclusion that CNNs alone cannot
improve the accuracy of a QA system.

All the different experiments described in section 4 did not improve the model accuracy very
much.

QAModel/loss/loss QAModel/loss/loss_end QAModel/loss/loss_start dev/EM

l‘iﬁ ‘ 5(\ .! R "Lf‘
LI |
I\

Uy
h*‘%

i L o0 W
%W»@gq‘!w ™ (m%wm M"%MM

I
X
I
X
I
X
I

]

dev/F1 dev/loss train/EM train/F1

]
&
]
]
X
]
&

= 2
Fig 3: Tensorflow plots from one of the runs

An example-

CONTEXT: (green text is true answer, - background is predicted start, . background is

predicted end, underscores_ are unknown tokens). Length: 100

in 1854 at ballarat there was an armed rebellion against the government of victoria by miners

protesting against mining taxes (the " - stockade ") . this was crushed by british troops , but

the discontents prompted colonial authorities to reform the administration (particularly reducing

the hated mining licence fees) and extend the franchise . within a short time , the imperial
arliament granted victoria responsible government with the passage of the colony of victoria act

. some of the leaders of the eureka rebellion went on to become members of the victorian

parliament .

QUESTION: what was the incident over taxes at ballarat called ?

TRUE ANSWER: eureka stockade

PREDICTED ANSWER: eureka stockade ") . this was crushed by british troops , but the

discontents prompted colonial authorities to reform the administration (particularly reducing the

hated mining licence fees) and extend the franchise . within a short time , the imperial parliament

granted victoria responsible government with the passage of the colony of victoria act 1855

F1 SCORE ANSWER: 0.091

EM SCORE: False

The example shown in the previous page highlights the issue with CNN for question
answering. The model cannot exactly figure out the location boundary. It cannot easily
distinguish the start and stop position. A more accurate model such as the BiDAF, Dynamic
coattention or self attention networks might be better at tagging the right words that form an
answer.

6 Acknowledgement

The author would like to thank Richard Socher, Abi See and all the team of TAs for striving
to help us understand the applications of deep learning techniques to NLP and especially all
the TAs who answered all our questions patiently on Piazza.

7 References

1. Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP 2014), 1746—-1751.

2. Deep Learning applied to NLP, Marc Moreno Lopez and Jugal Kalita

3. Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional
attention flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

4. https://github.com/minimaxir/char-embeddings

5. Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100, 000+
questions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

